Lecture 22

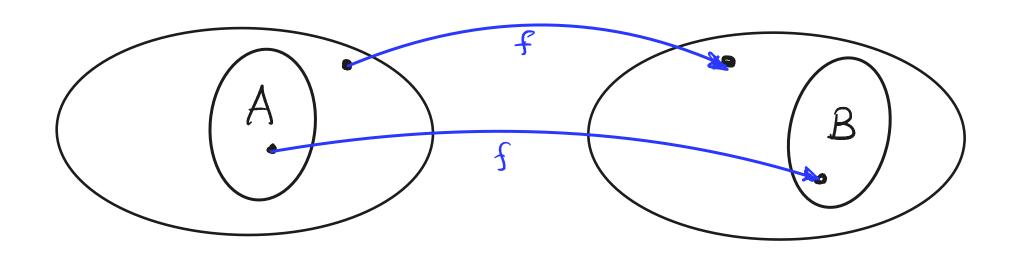
- · HW5 due Sunday 11 am
- Review problems posted for Test 2

 (on course webpage Symphementary Materials)

 Will post solvs sunday or monday
- · Review Session tentatively Mon Dec 1 6 pm

NP-completeness

Definition Language A is polynomial-time (mapping) reducible to B (written $A = \beta$) if there is a polynomial-time computable function $f: \leq^* \rightarrow \leq^*$ such that $w \in A \iff f(w) \in B$



Definition

- A language $B \subseteq \{0,1\}^*$ is NP-hard if for every $A \in NP$ there is a polynomial time reduction from A to B ($A \leq_p B$)
- B= ₹0,13x is NP-complete if: (i) B is in NP and (ii) B is NP-hard

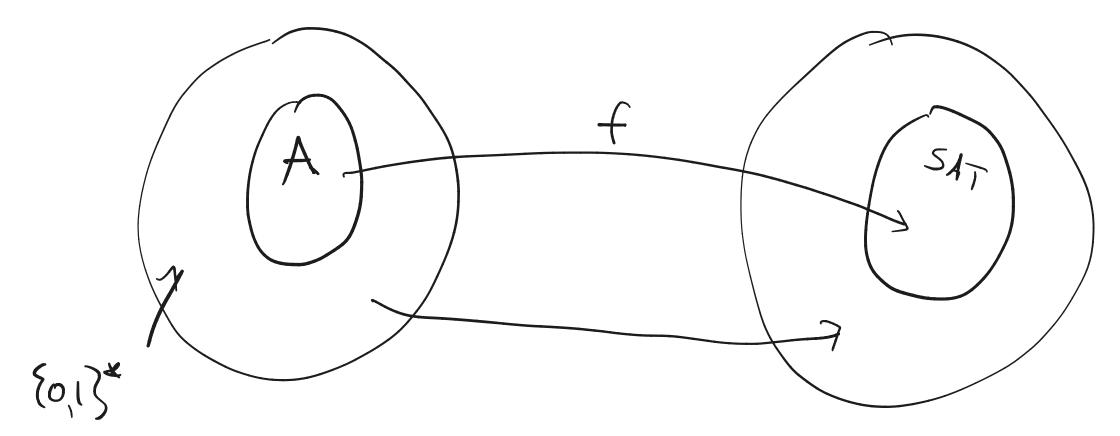
NP - completeness

Proof Today

Cook-Levin theorem

SAT is NP-complete

MA = {0,1} in NP



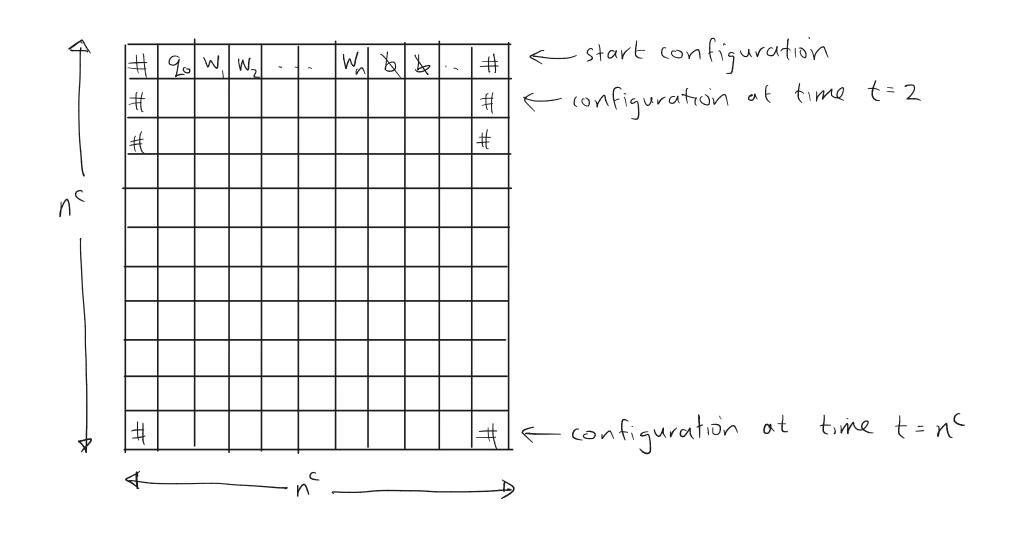
1. KSATENP (already did)

2. To prove KSST IS NP-hard we have to prove:

For every larguage AENP, A = p KSAT

Let AENP and let N be a nondet. TM accepting A in polynomial time, no, c>o.

A tableaux for N on input w:

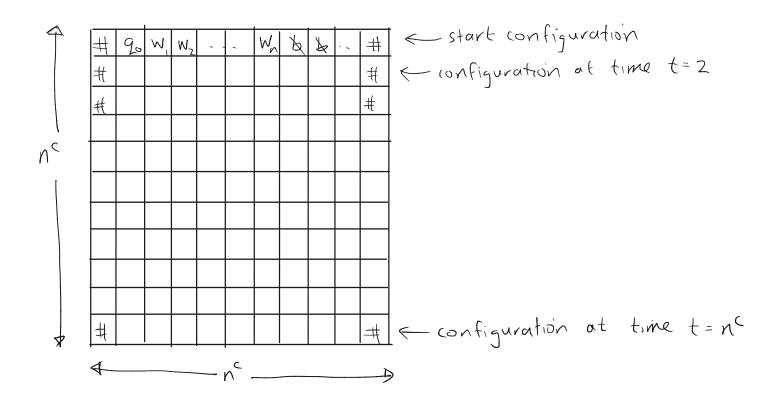


High Level idea:

A tableaux for N on input w:

WEA (=) = accepting computation path of Nonw

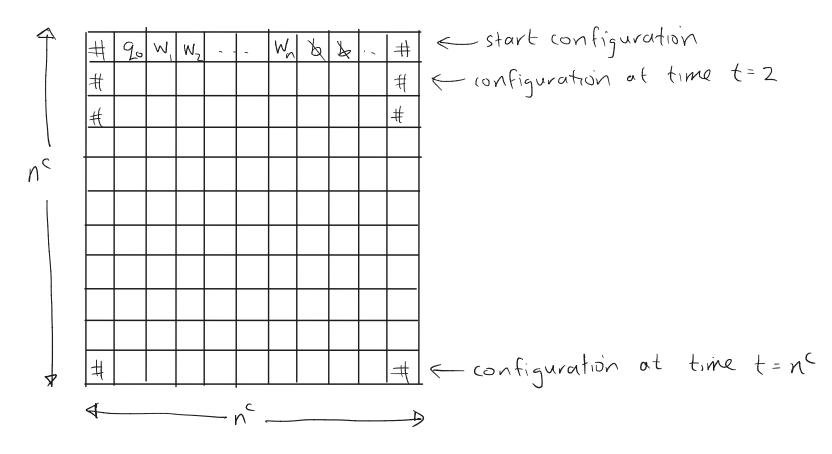
€> ∃ accepting tableaux for N on W



= 3x such that x is legal tableaux of Non w description of tableaux

€> D(X) is satisfiable

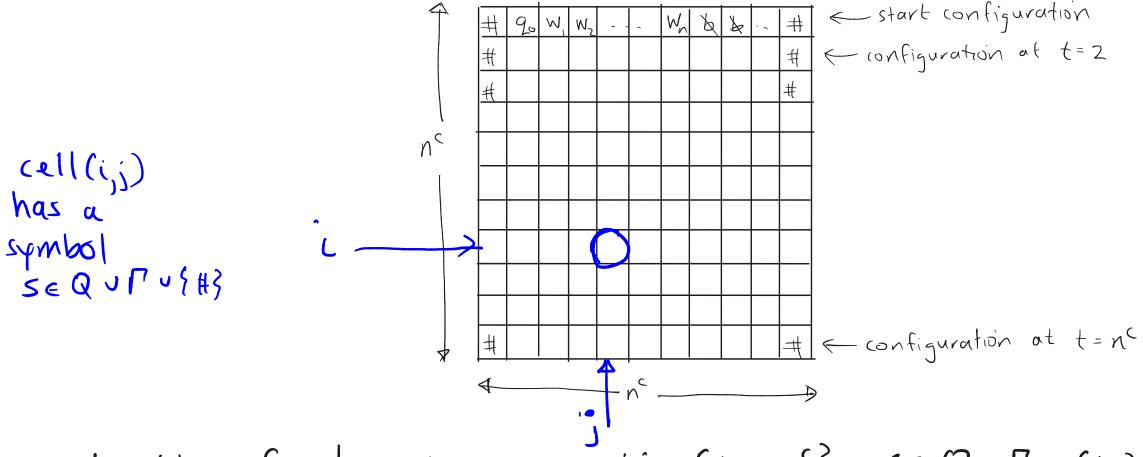
Let AENP and let N be a Nondet. TM accepting A in polynomial time, n°, c>0.
A tableaux for N on input w:



A tableaux is accepting if for some tene configuration at time t is accepting (the state at time t is an accept state

We want $f: w \in \Sigma^* \longrightarrow ENF \emptyset$ such that $w \in A$ if f'(w) satisfiable COOK-Levin Theorem: KSAT is NP-complete

We want f: w -> \$\ph\$ such that \$\ph\$ is satisfiable iff there is an accepting fableaux of N on input W.



Variables of ϕ : $x_{i,j,s}$, $i,j \in \{1,...,n^c\}$, $s \in Q \cup \Gamma \cup \{4\}\}$ Q = states q N $\Gamma = tape alphabet$ $(x_{i,j,s} = 1) \text{ iff cell (i,j) contains symbol s})$

Φ = Φ cell ^ Φ start ^ Prove ^ Paccept

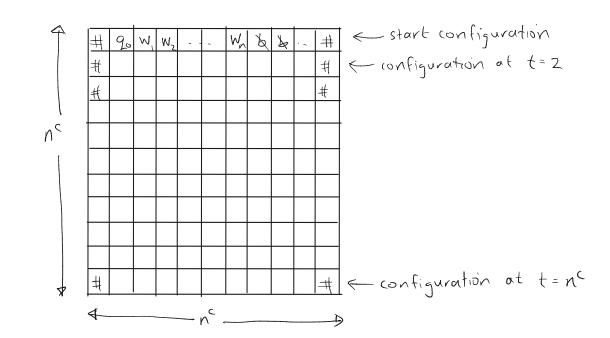
Φ = Φ cell ^ Φ start ^ Φ move ^ Φ accept

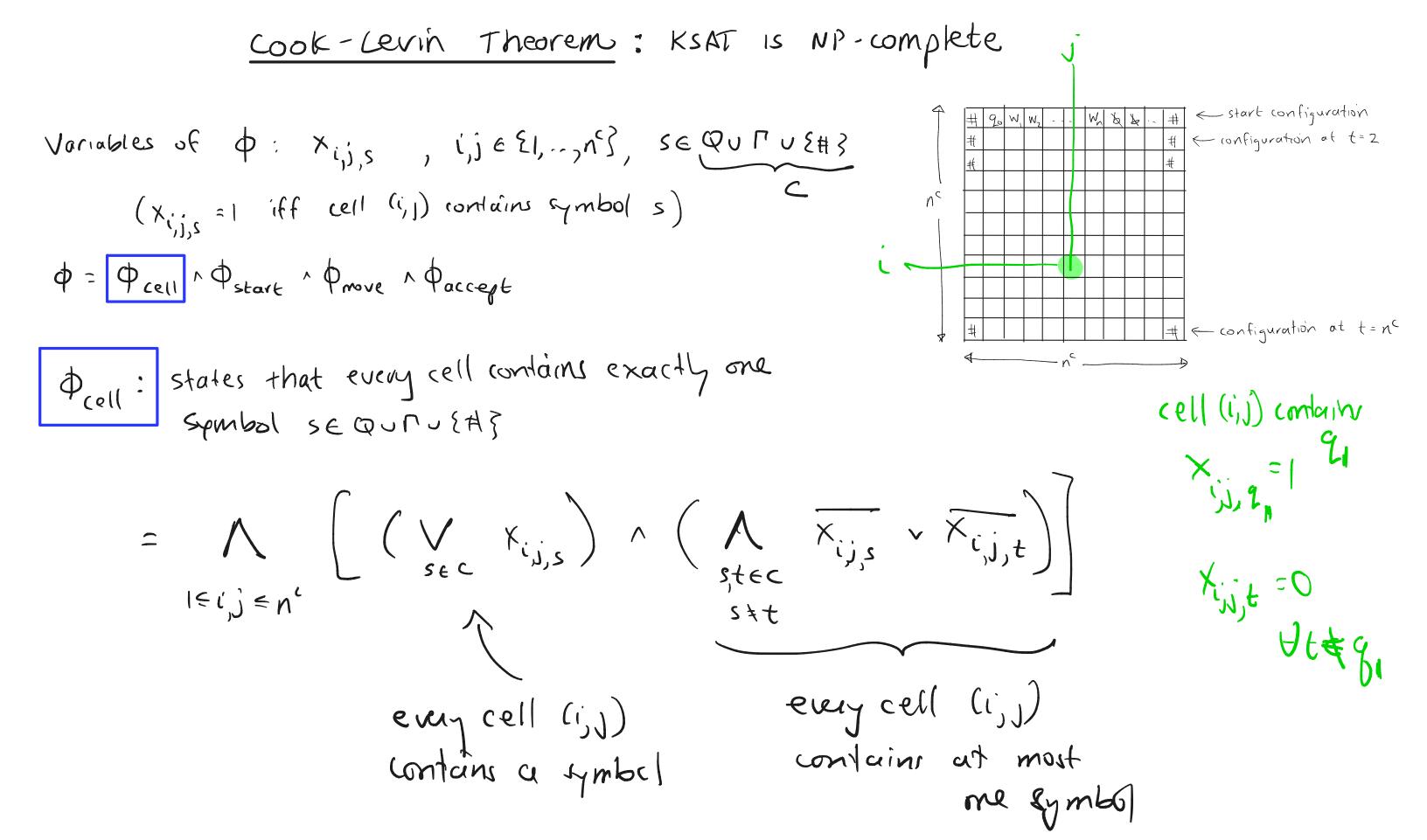
Dell: states that every cell contains exactly one Symbol SEQUPUETS

Astort: start config is #20 m. - water-lett

faccept: some cell contains an accept state gacept

Prove: each row (configuration at time t) follows from previous row (config at time t-1) by a valid transition according to N's transition function

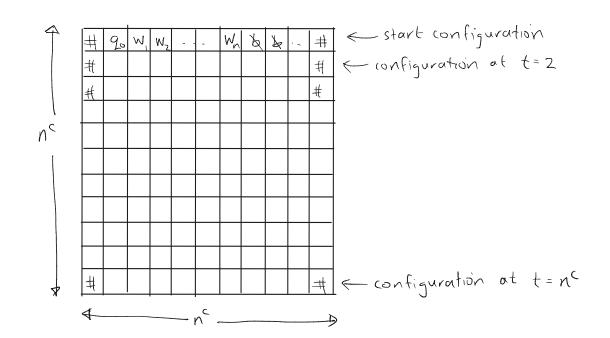




Variables of ϕ : $x_{i,j,s}$, $i,j \in \{1,...,n'\}$, $s \in Q \cup \Gamma \cup \{\#\}$ (Xiis =1 iff cell (i,1) contains symbol s) φ = Φ cell 1 Φ start 1 Φ move 1 Φ accept

Astort: Start config is #20 m. - water-lett

then w, . - - wn starts with A then 2



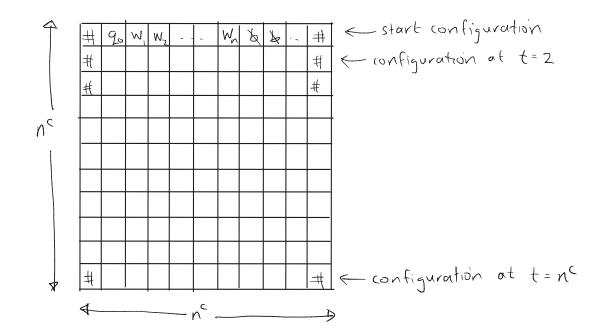
last symbol blonks

Variables of ϕ : $x_{i,j,s}$, $i,j \in \{1,...,n'\}$, $s \in \mathbb{Q} \cup \mathbb{P} \cup \{1,1\}$ $(x_{i,j,s} = 1)$ iff cell (i,j) contains symbol s) $\phi = \phi_{cell} \wedge \phi_{start} \wedge \phi_{move} \wedge \phi_{accept}$

paccept: some cell contains an accept state gazeet

$$= \bigvee_{i,j, qaccept} \chi_{i,j, qaccept}$$

$$1 \leq i,j \in n^{c}$$



Cook-Levin Theorem: KSAT IS NP-complete Variables of ϕ : $x_{i,j,s}$, $i,j \in \{1,...,n'\}$, $s \in Qu \Gamma u \{\#\}$ (Xiis =1 iff cell (i,j) contains symbol s)

φ = Φ cell ^ Φ start ^ Φ move ^ Φ accept

(the (i,j) window is legal) [=[] = NC

that is, $\forall (i,j)$ the cell (i,j) is consisted with a legal transition from the configuration at fine i-1

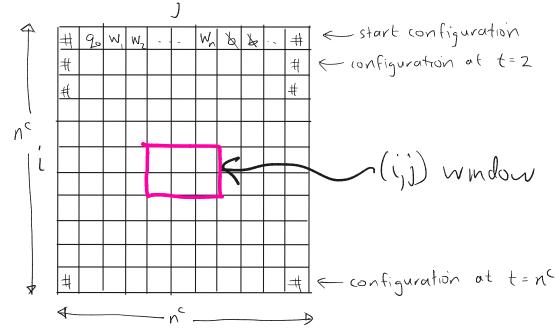
start configuration

Configuration at t= 2

Window

configuration at t=n^c

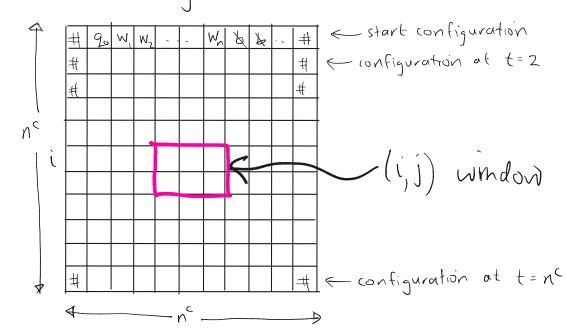
Variables of ϕ : $x_{i,j,s}$, $i,j \in \{1,...,n'\}$, $s \in \mathbb{Q} \cup \mathbb{P} \cup \{1,1\}$ $(x_{i,j,s} = 1)$ iff cell (i,j) contains symbol s) $\phi = \phi_{cell} \wedge \phi_{start} \wedge \phi_{move} \wedge \phi_{accept}$



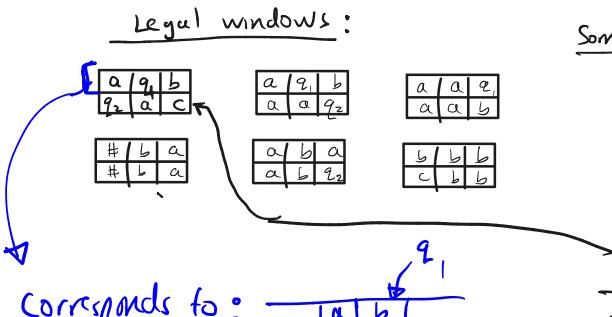
Key idea: We can check that entire tableaux is legal by locally checking every 2x3 window

A zx3 window is legal if it doesn't violate N's transition fundin.

Variables of ϕ : $x_{i,j,s}$, $i,j \in \{1,...,n'\}$, $s \in \mathbb{Q} \cup \Gamma \cup \{\#\}$ $(x_{i,j,s} = 1 \text{ iff cell } (i,j) \text{ contains symbol } s)$

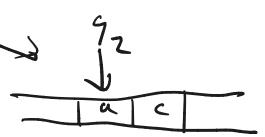


Example: $S(q_1,a) = \{(q_1,b,R)\}, S(q_1,b) = \{(q_2,c,L),(q_2,a,R)\}$

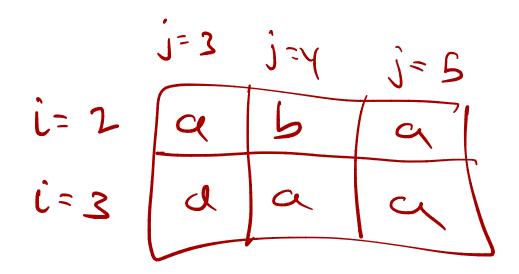


Some Illegal Windows:

J	6	Q		a	٦,	
2	а	a	,	9	a	
					,	_



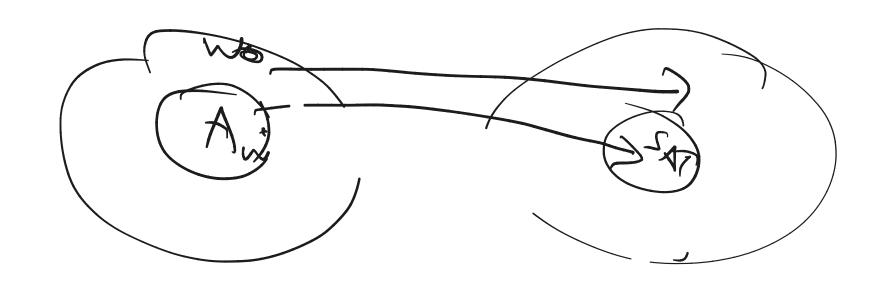
21 21 6 b b d d and b d



Specify not regal by:

$$\left(\begin{array}{c} \overline{\chi}_{2,3,\alpha} \\ \end{array}\right)$$
 $\left(\begin{array}{c} \overline{\chi}_{3,3,\alpha} \\ \end{array}\right)$ $\left(\begin{array}{c} \overline{\chi}_{3,3,\alpha} \\ \end{array}\right)$

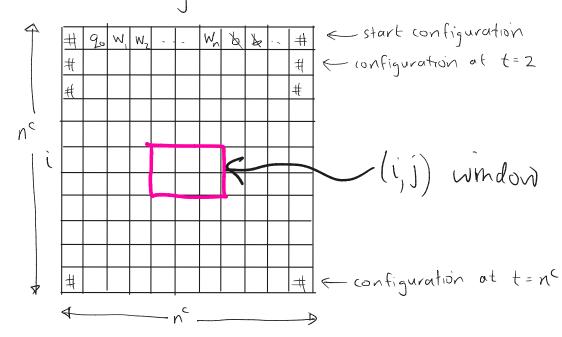
CNF underlying variables x, ... x



Variables of ϕ : $\chi_{i,j,s}$, $i,j \in \{1,...,n^c\}$, $s \in \mathbb{Q} \cup \Gamma \cup \{\#\}$ $(\chi_{i,j,s} = 1 \text{ iff cell } (i,j) \text{ contains symbol } s)$

Φ = Φ cell 1 Φ start 1 Prove 1 Paccept

prove: \(\langle \text{(the (i,j) window is legal)} \\ \(\text{1.5} \in \text{NC} \)



$$\oint_{1 \leq i,j \leq n^{c}} \left\{ \text{the } (i,j)^{\text{th}} \text{ window} \text{ to legal} \right\}$$

$$= \bigwedge_{1 \leq i,j \leq n^{c}} \left\{ \left(\chi_{i-1,j}, \alpha_{i}, \wedge \chi_{i,j}, \alpha_{2}, \wedge \chi_{i+1,j}, \alpha_{3}, \wedge \chi_{i,j+1,\alpha_{6}}, \wedge \chi_{i,j+1,\alpha_{6}} \right) \right\}$$

$$= \bigwedge_{1 \leq i,j \leq n^{c}} \left(\chi_{i-1,j}, \alpha_{i}, \wedge \chi_{i,j}, \alpha_{2}, \wedge \chi_{i+1,j}, \alpha_{3}, \wedge \chi_{i,j+1,\alpha_{6}}, \wedge \chi_{i,j+1,\alpha_{6}} \right)$$

$$= \bigwedge_{1 \leq i,j \leq n^{c}} \left(\chi_{i-1,j}, \alpha_{i}, \wedge \chi_{i,j}, \alpha_{2}, \wedge \chi_{i+1,j}, \alpha_{3}, \wedge \chi_{i,j+1,\alpha_{6}}, \wedge \chi_{i,j+1,\alpha_{6}} \right)$$

$$= \bigwedge_{1 \leq i,j \leq n^{c}} \left(\chi_{i-1,j}, \alpha_{i}, \wedge \chi_{i,j}, \alpha_{2}, \wedge \chi_{i+1,j}, \alpha_{3}, \wedge \chi_{i,j+1,\alpha_{6}}, \wedge \chi_{i,j+1,\alpha_{6}} \right)$$

$$= \bigwedge_{1 \leq i,j \leq n^{c}} \left(\chi_{i-1,j}, \alpha_{i}, \wedge \chi_{i,j}, \alpha_{2}, \wedge \chi_{i+1,j}, \alpha_{3}, \wedge \chi_{i,j+1,\alpha_{6}}, \wedge \chi_{i,j+1,\alpha_{6}} \right)$$

$$= \bigwedge_{1 \leq i,j \leq n^{c}} \left(\chi_{i-1,j}, \alpha_{i}, \wedge \chi_{i,j}, \alpha_{2}, \chi_{i+1,j}, \alpha_{3}, \wedge \chi_{i,j+1,\alpha_{6}}, \chi_{i,j+1,\alpha_{6}} \right)$$

$$= \bigwedge_{1 \leq i,j \leq n^{c}} \left(\chi_{i-1,j}, \alpha_{i}, \chi_{i,j}, \alpha_{2}, \chi_{i+1,j}, \alpha_{3}, \chi_{i,j+1,\alpha_{6}}, \chi_{i,j+1,\alpha_{6}} \right)$$

$$= \bigwedge_{1 \leq i,j \leq n^{c}} \left(\chi_{i-1,j}, \alpha_{i}, \chi_{i,j}, \alpha_{2}, \chi_{i+1,j}, \alpha_{3}, \chi_{i,j+1,\alpha_{6}}, \chi_{i,j+1,\alpha_{6}} \right)$$

$$= \bigwedge_{1 \leq i,j \leq n^{c}} \left(\chi_{i-1,j}, \alpha_{i}, \chi_{i,j}, \alpha_{2}, \chi_{i+1,j}, \alpha_{3}, \chi_{i,j+1,\alpha_{6}}, \chi_{i,j+1,\alpha_{6}} \right)$$

$$= \bigwedge_{1 \leq i,j \leq n^{c}} \left(\chi_{i-1,j}, \alpha_{i}, \chi_{i,j}, \alpha_{i}, \chi_{i,j+1,\alpha_{6}}, \chi_{i,j+1,\alpha_{6}}, \chi_{i,j+1,\alpha_{6}}, \chi_{i,j+1,\alpha_{6}}, \chi_{i,j+1,\alpha_{6}} \right)$$

$$= \bigwedge_{1 \leq i,j \leq n^{c}} \left(\chi_{i-1,j}, \chi_{i-1,j+1,\alpha_{6}}, \chi_{i-1,j+1,\alpha_{6}}, \chi_{i-1,j+1,\alpha_{6}}, \chi_{i-1,j+1,\alpha_{6}}, \chi_{i-1,j+1,\alpha_{6}} \right)$$

$$= \bigwedge_{1 \leq i,j \leq n^{c}} \left(\chi_{i-1,j+1,\alpha_{6}}, \chi_{i-1,j+1,\alpha_{6}}, \chi_{i-1,j+1,\alpha_{6}}, \chi_{i-1,j+1,\alpha_{6}}, \chi_{i-1,j+1,\alpha_{6}}, \chi_{i-1,j+1,\alpha_{6}} \right)$$

$$= \bigwedge_{1 \leq i,j \leq n^{c}} \left(\chi_{i-1,j+1,\alpha_{6}}, \chi_{i-1,j+1,\alpha_{6}}, \chi_{i-1,j+1,\alpha_{6}}, \chi_{i-1,j+1,\alpha_{6}}, \chi_{i-1,j+1,\alpha_{6}}, \chi_{i-1,j+1,\alpha_{6}} \right)$$

$$= \bigwedge_{1 \leq i,j \leq n^{c}} \left(\chi_{i-1,j+1,\alpha_{6}}, \chi_{i-1,j+1,\alpha_{6}}, \chi_{i-1,j+1,\alpha_{6}}, \chi_{i-1,j+1,\alpha_{6}}, \chi_{i-1,j+1,\alpha_{6}} \right)$$

$$= \chi_{i-1,j+1,\alpha_{6}} \left(\chi_{i-1,j+1,\alpha_{6}}, \chi_{i-1,j+1,\alpha_{6}}, \chi_{i-1,j+1,\alpha_{6}}, \chi_{i-1,j+1,\alpha_{6}} \right)$$

So we've defined $f: w \longrightarrow \phi(\hat{x})$ $\phi: \phi_{start} \wedge \phi_{cent} \wedge \phi_{mon} \wedge \phi_{accept}$ such that:

(1) $f(w) = \phi$ Building ϕ is polytime

(There is an assignment to variables $x_{i,j,s}$)

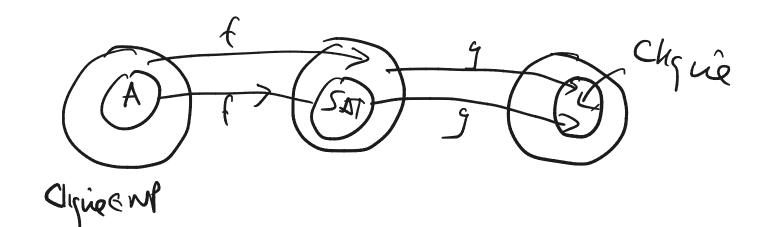
Iff there is an accepting computation (tableaux)

of N on W iff WEA

see proof in book

Last class we showed these Languages NP-Complète assuming SAT NP-complète:

- CLIQUE
- INDEDENDENT SET
- HITTING SET



OTHER NP-LOMPLETE PROBLEMS.

- · COLORIN y

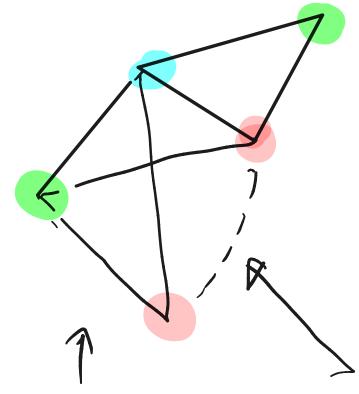
. SUBSET SUM
Proofs of NP-completeness
in book

COLORING (OR GRAPH-COLOR)

Input: (gk)

Accept if we can properly color 9 using colors 1, 2, ..., K

No zadjacent vertices have same color



3 wolorable

Theorem COLONING IS NP-COMPLETE

- (1) IN NP (did earlier)
- (Z) NP-hard

with this edge added Need 4 colors

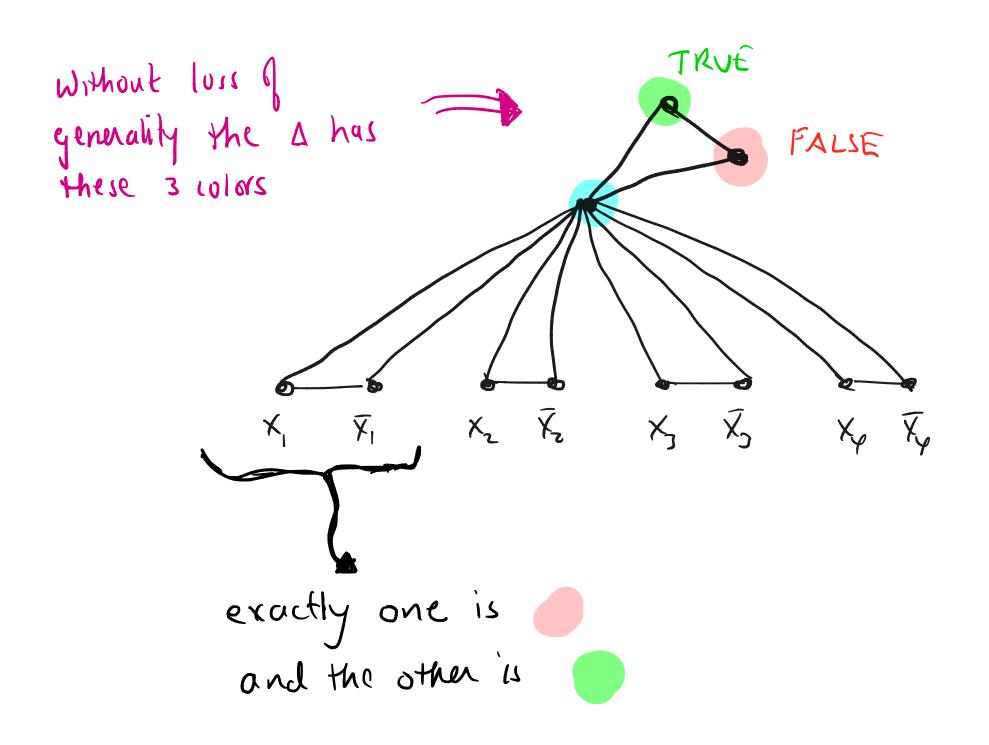
COLORINY IS NP-HARD We will show 35 AT < Coloning $f(\phi) \longrightarrow \langle G_{\phi}, 3 \rangle$ where Go is a graph 3CNF n vars m clauses such that M·M D'is satisfiable iff GD 15 3-colorable.

(X, VX2 XX3) = frees constraint that the end satisfying ass. (X, VX4) X=1 X40 to can't have X=0 x20 + X3=0 COLOTING IS NP-HARD

We will show 35 AT \leq_{pr} Coloring $f(\phi) \longrightarrow \langle G_{\phi}, 3 \rangle$ where G_{ϕ} is a graph of vars and clauses

Example $\phi = (\chi_1 \vee \chi_2 \vee \chi_3) \wedge (\chi_1 \vee \chi_2) \wedge (\chi_1 \vee \chi_4) \wedge (\chi_2 \vee \chi_3)$ we want to simulate of assignment to the variables using 3 colors

Example $\phi = (\chi_1 \vee \chi_2 \vee \chi_3) \wedge (\chi_1 \vee \chi_2) \wedge (\chi_1 \vee \chi_4) \wedge (\chi_2 \vee \chi_3)$

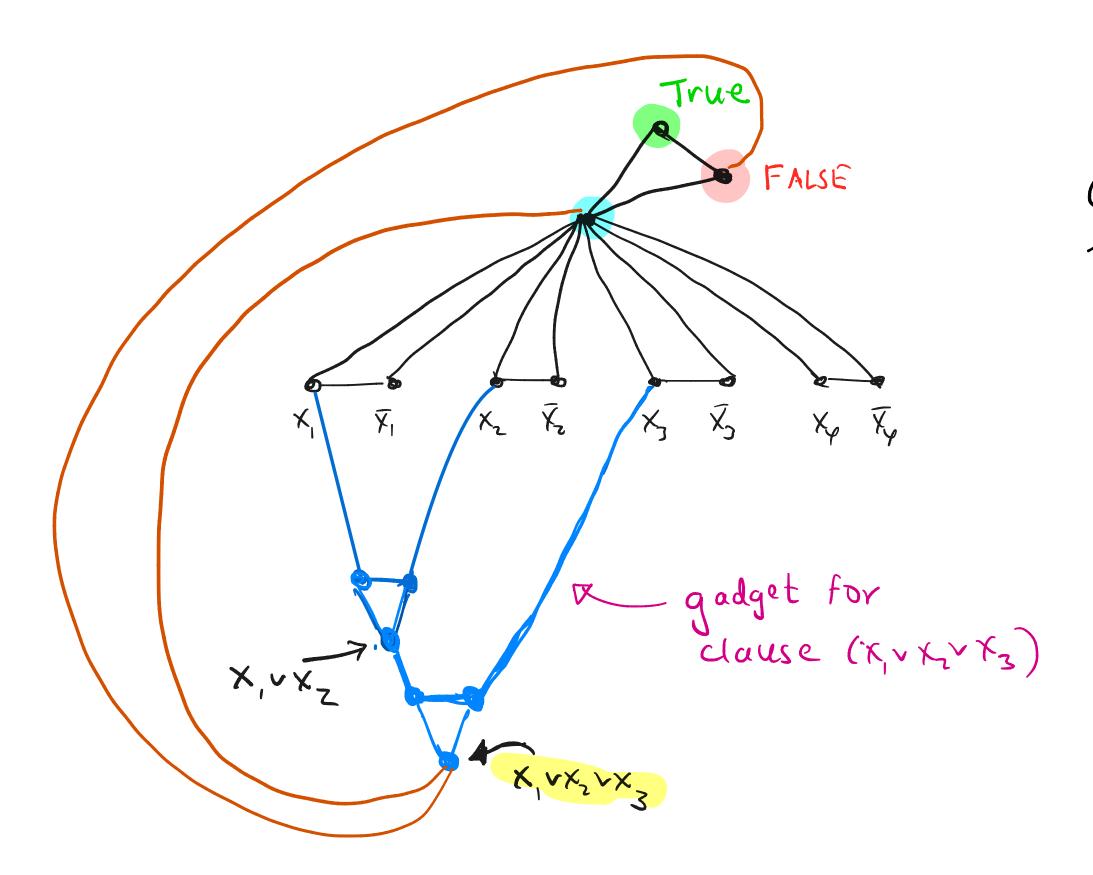


'gadget'

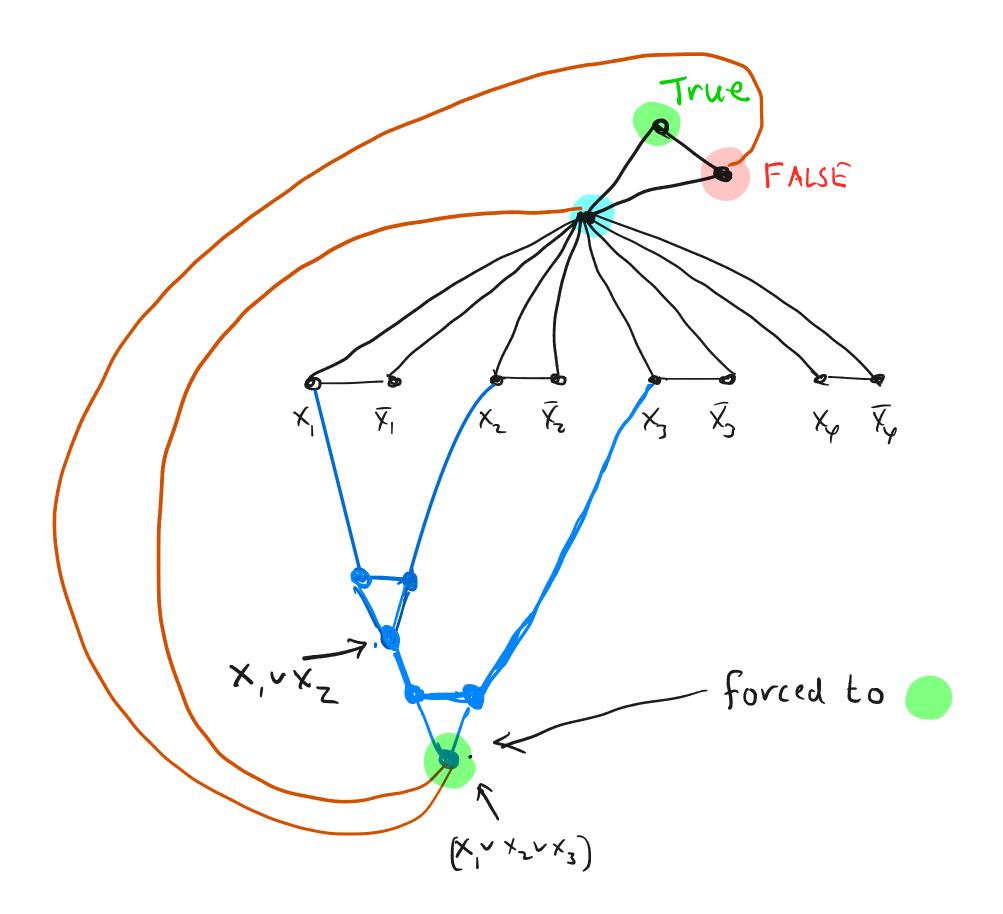
> that forces

colors to correspond

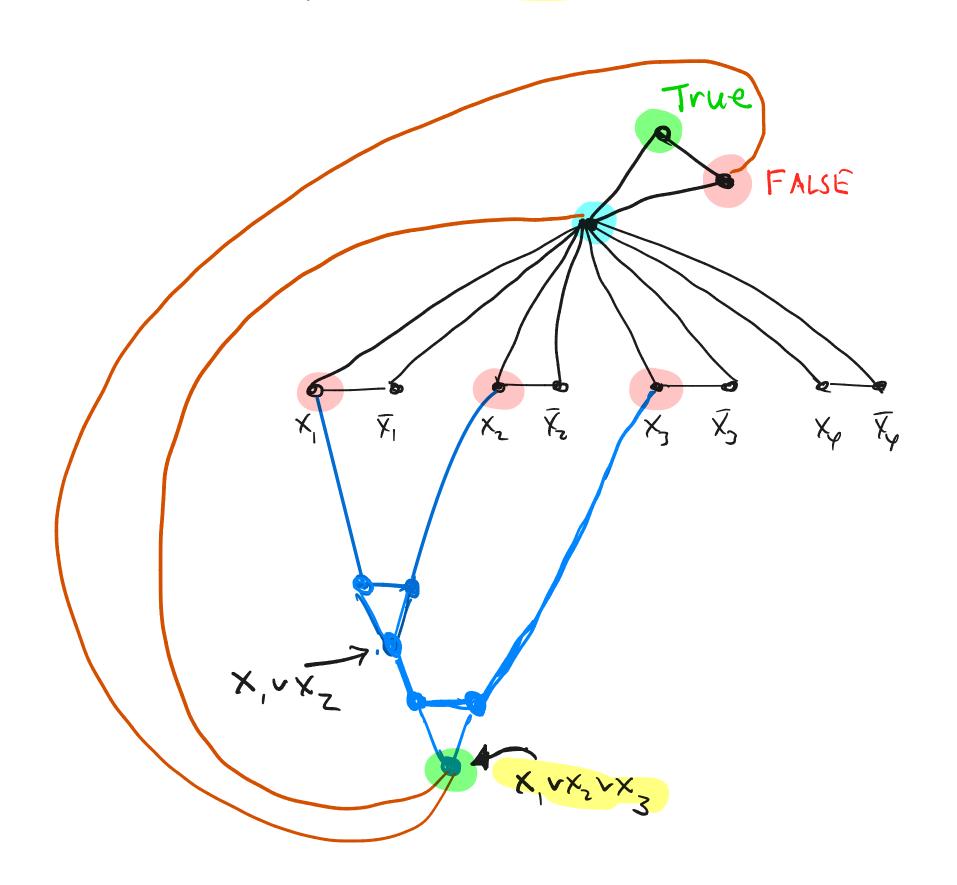
to 0/1 assignment



Next: Clause "gadgets" to force constraints on variables

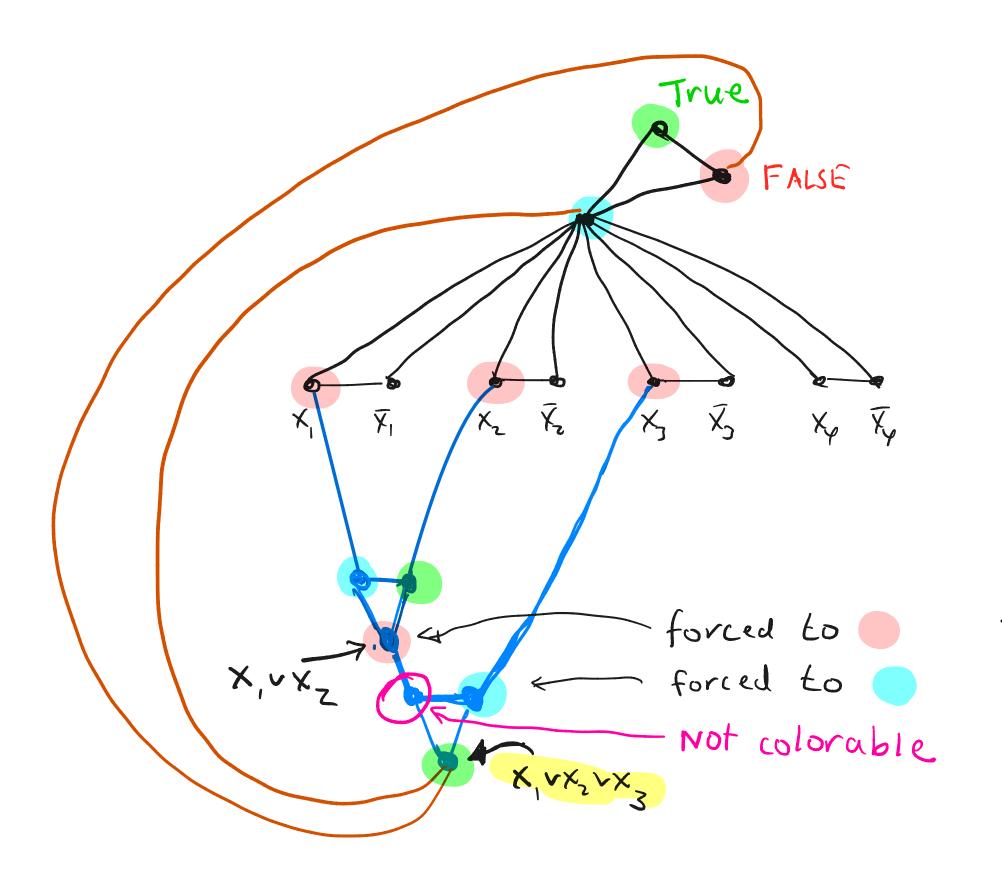


Next: Clause "gadgets" to force constraints on variables



Next: Clause "gadgets" to force constraints on variables

Bad case: x1, x2, x3 all



Next: Clause 'gadgets" to force constraints on variables

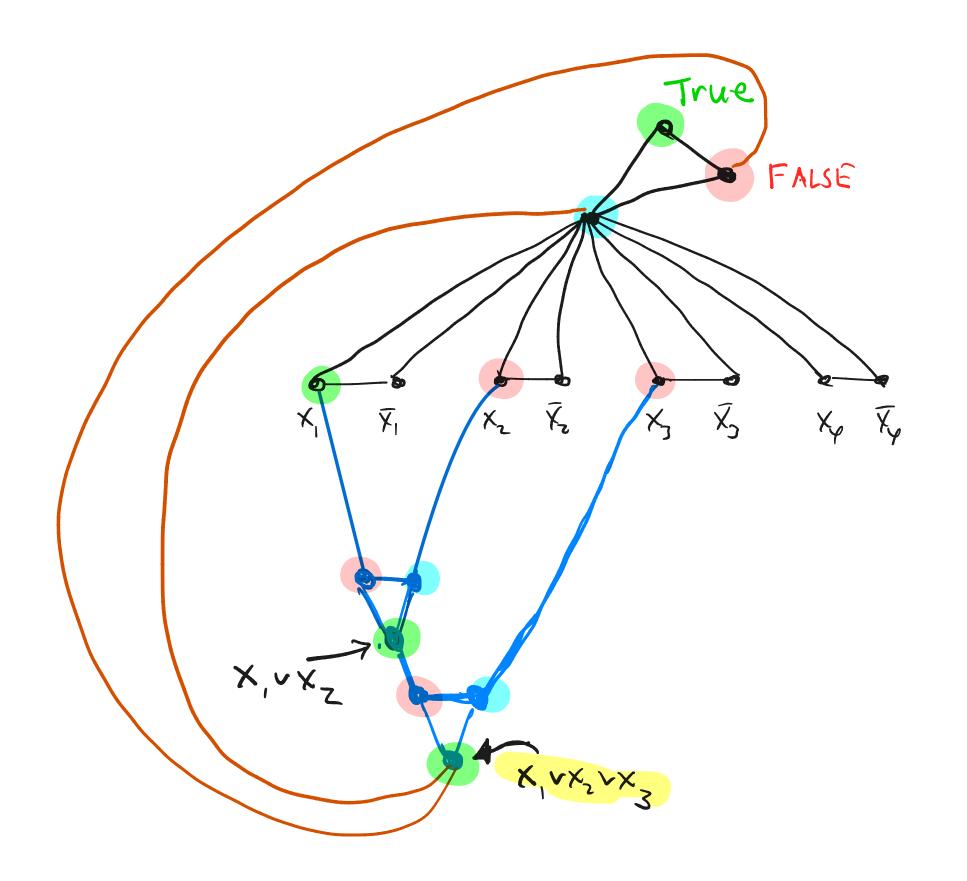
Bad case:

X, X2, X3 all

If all literals set to

(all fulse), Not

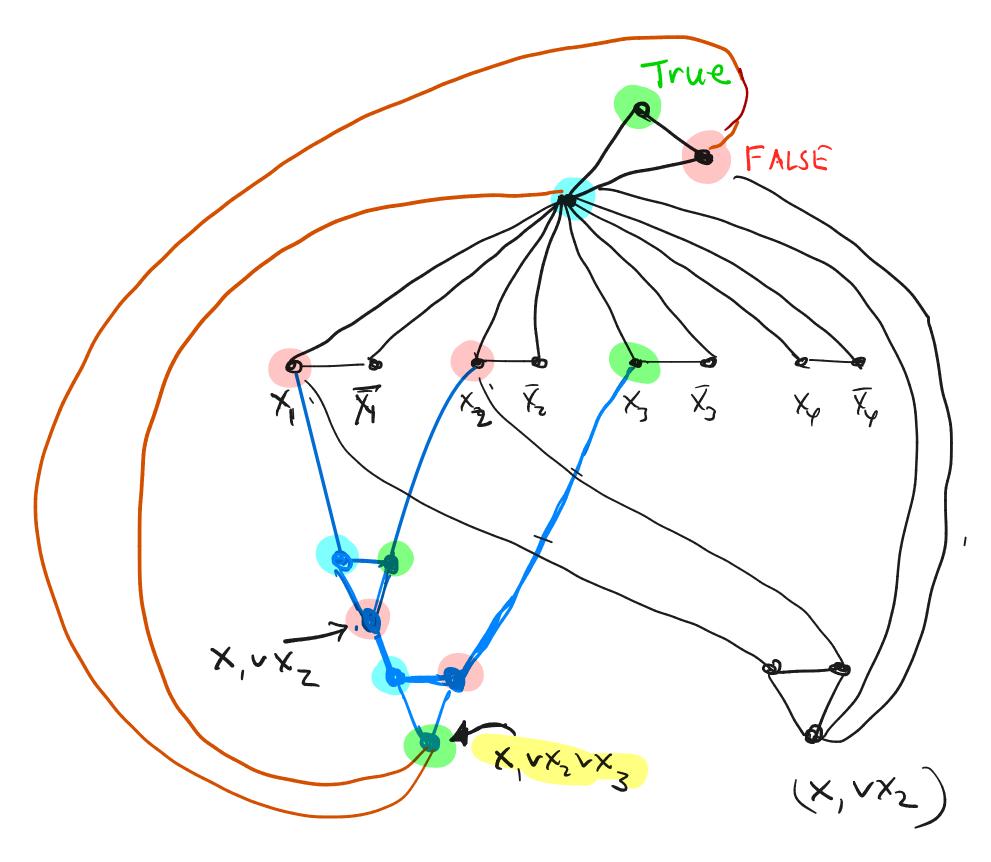
3-colorable



* As long as one of the 3 liferals is we can properly 3-color this gadget

Example: X, X₂, X₃

Example \$ = (x, vx2vx3) \(\lambda, vx2\) \(\lambda, vx3\)



* As long as one of the 3 liferals is we can properly 3-color this gadget

Example 2 X₁, X₂ X₃ Use the same gadget trick for each clause to build Go

- · Can Build go from & in polytime
- e (an show Go 11 3-cotorable 1ff

 has a satisfying assignment

Subset SUM INP COMPLETE

Input (5, t) where S is a set of positive integers, t is a positive integer.

Accept iff there is a subset of S that sums to t

Example S= {1,2,2,5,13,15} t=17 V

t= 11 ×

3SAT -> Subject Sum

HAMPATH = {(g,s,t) | g is a directed graph containing a Hamilton path (visits all vertices once) from s to t}

Verifier V on input ((g,s,t), p):

Check if pencodes a Hamiltonian path from s to t. If yes -> accept; otherwise -> reject

Theorem HAMPATH is NP-complete

Proof

1. HAMPATH in NP (already did this)

2. We will show 3SAT = HAMPATH (and thus HAMPATH IS NP-hard)

Let $\phi = (a, vb, vc,) \wedge (a_2vb_2vc_2) \wedge \dots \wedge (a_mvb_mvc_m)$ each a_i, b_i, c_i is a literal.

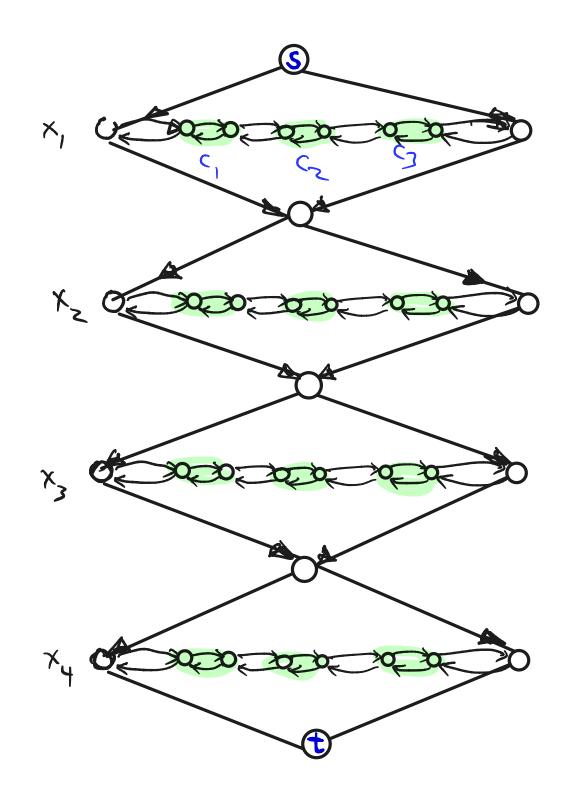
 $f: \phi \rightarrow (g_{\phi}, s, t)$

HAMPATH = { (g,s,t) | G is a directed graph with a hamiltonian path (usits every vertex in g exactly once) from s to t }

Let $\phi = (x, vx_3 \overline{vx_4}) \wedge (x_2 \overline{vx_3} \overline{vx_4}) \wedge (x_1 \overline{vx_2} \overline{vx_3})$ $f : \phi \rightarrow (g_{\phi}, s, t)$

n=# vars = y m=# clauses=3

900



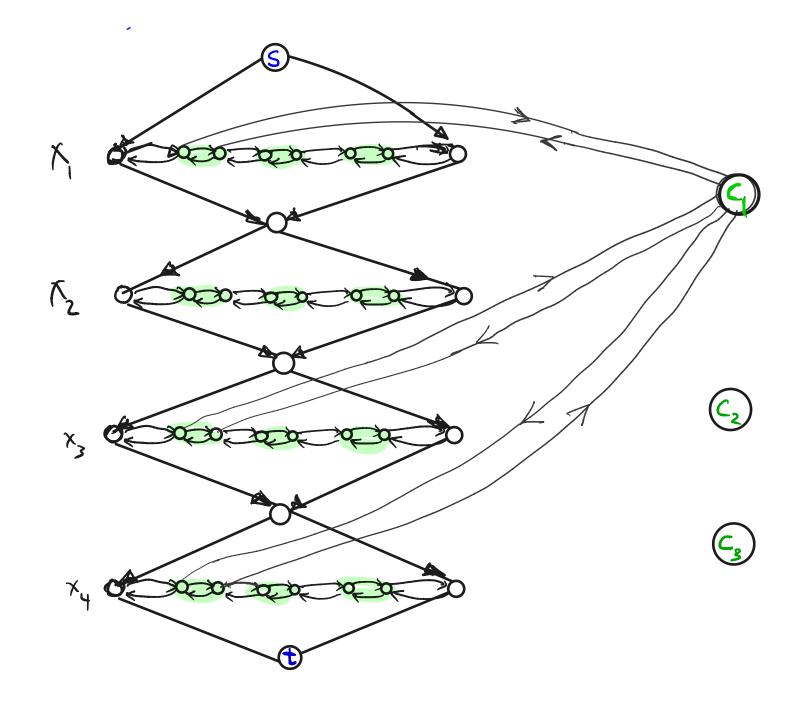
C₂

C₃

Let $\phi = (x_1 \vee x_3 \vee \overline{x_4}) \wedge (x_2 \vee \overline{x_3} \vee x_4) \wedge (\overline{x_1} \vee \overline{x_2} \vee x_3)$ $f : \phi \rightarrow (g_{\phi}, s, t)$

n=# vars = y m=# clauses=3

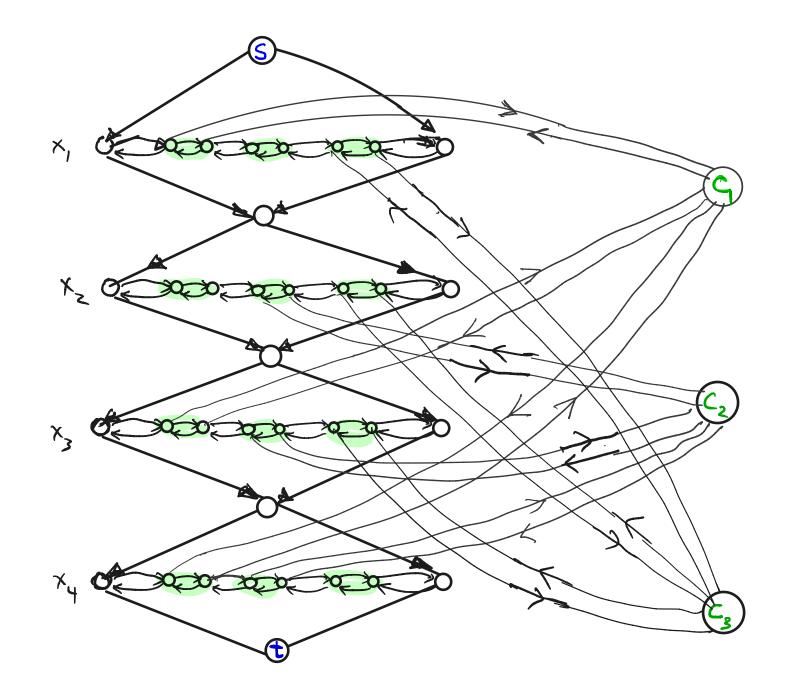
9000



Let $\phi = (x_1 \vee x_3 \vee \overline{x_4}) \wedge (x_2 \vee \overline{x_3} \vee x_4) \wedge (\overline{x_1} \vee \overline{x_2} \vee x_3)$ $f : \phi \rightarrow (g_{\phi}, s, t)$

n=# vars = y m=# clauses=3

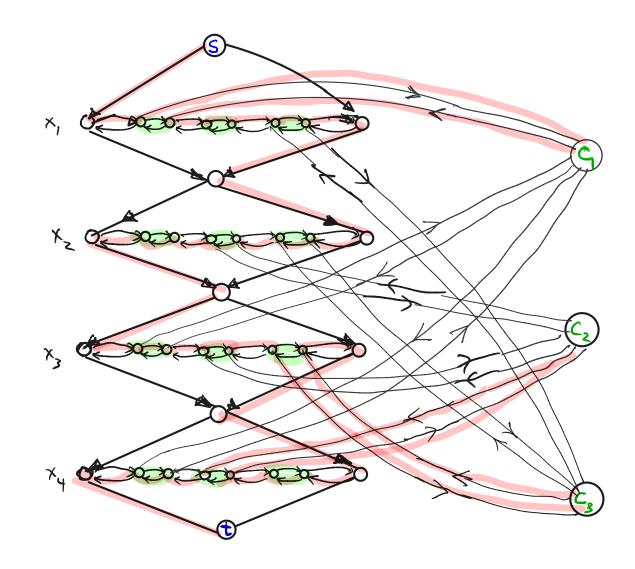
900



Let
$$\phi = (x, \forall x_3 \forall \overline{x_4}) \wedge (x_2 \forall \overline{x_3} \forall \overline{x_4}) \wedge (\overline{x_1} \forall x_2 \forall x_3)$$

 $f : \phi \rightarrow (g_{\phi}, s, t)$

n=# vars = y m=# clauses=3



Claim & is satisficiable iff 90 has a Hamiltonian path from s to t

d: x_1=1 x_2=0 x_3=1 x_4=0

C, C, C,