
Lecture20

computability Wrapup

1
.

TMs : general model
of computation Khurch-Turing Thesis

stronger versions
: Multi-tape ,

Nondeterministic

2. Decidable Languages

Examples : all Regular
Languages Regular

Recognizable Languages Decidable

Examples : All decidable languages HALT, ATM Recognizable

3.Closure properties of decidable/recognizable Is ·

4
..

Undecidable/unrecognizable Languages

Method of Diagonalization
Reductions

The Languages we showed are
undecidable were all about

properties of TMs.
What about other more natural functions ?

Here is a sample of some
other (famous) undecidable problems :

D. same questions
(HALT
, Acm) are also

undecidable in

any
other model of computation , e .g. python programs, quantum

compreters , etc.

② Hilbert's Tenth problem is
undecidable (1900)

Input : a diophantine equation (polynomial equation
with integer creff's

Example : 3x2-2xy -
23 + 5xy2 = 0

Output : a sol over integers , or
"unsolvable"

-. undecidability of First order Logic (Hilbert's Entscheidungsproblem)
&

-

④ Data compression

given a string s 30
,
139

,
find shortest program

That outputs s

⑤ group Theory
↑

given a (finitely presented) group 9
Is a finite ?

Is & simple? 3 all undeadable

559 commu taxie

③ Physics - Spectral gap (2015)

(difference between ground state of first exacted state)

Sci . American out 2018)

Many subsequent undeciable problems in quartere physics

Complexitytheory

We saw that certain languages are undecidable-
even with unbounded resources (time

, memory
we can't sole these problems in the worst case

But even if a problem is decidable it may take-

an enormous amount of time /memory , so it
still may not be solvable in practice

Complexity Theory
: the study of important /centra (

problems and the
amount of resources required

to solve them.

time
, space ,

randomness
,
paralled computation,

quantum computer

some Examples

① Matrix Multiplication : given 2 nxu matrices
M
., Me

How much time (elementary plustimes operations)
to output M, Me ?

② Prime : given a number X in binary , is it prime ?

③ Factoring : given x in binary ,
output prime factorization

①Clique : given a graph g onm vertices
,
and a number 1

does I contain
a clique of size 17 ?

⑤ Sudoku : input nur puzzle , output a solution

↑

En: n M=
Entry (i ,j) of MixMz :

- abii+ GabritGobi 3 O(n) operations

Runtime of this obvous alg 2 . M

&

r entries On) operations each

Q . Is there an alg runny in n time ?

Best know ne time

&

PrimalityS

Say Y - 23 decimal
-

bing

There is a randomind olg .

That

runs veryjast 2

Open for a lay times is there a fast

deterministic cy (runtime n2
,
n

=let me&
↑
Yes !

Timecomplexity

A step of a TM is a single transition of the TM
or an input

The time complexity of a TM is a function

Idenoted t(n) or f(n)) that measures the worst-case

number of

stepsMakesbefore halting itany input

Time Complexity
,
Big-O Notation

Big -O : ignore everything except the dominant growth
term

, including constant factors

f(n)
, gan)DeinForanytructions= no f(u) (g()

Examples
- f(n) = 4n + 10 g(n) = n

0 4n + 10
= On)

②n2 + 3n + 4 = 0(nz) f(n) = o(g(n))

2u + 3 = 0(z)
③

⑦ nlogn + loglogn = 0(logn)

Time Complexity
,
Big-O Notation

Why do we care about asymptotic (Big-o) growth ?

· We want to
estimate the runtime of an algorithm.

However differences in hardware/implementation
can

lead to differences
inruntime.

Example : register
size
,
caching

,

etc.

&

· Analyzing Runtime
can be cumbersome - big-o

hides a lot of unnecessary details
&

Example of how Big-0 Makes things Easies

M on input w

scan across tape until we see a 0 or 1 On steps

If more found -> half and accept 04) stees

If one found ,

contime scanning until a O(n) steps

matching o or 1 found

0() Steps3 O(n) Loops

If none found reject

O(n) steps
Our cross off that symbol and repeat

So total worst caseruntime
on w

,

I men is

(0(n) + o() + 0(n) + 0() + o(n)) - O(n) = O(n) O(n) = 0(nz)

The Famous Class "p"

Defn Let ↓ IN - IN (t = runtime)

TIME (t(n)) = 3L/L is a language decided by a

O (t (n)) - time TM3

if +(n) = 0 (nK) for some 10Dein t :N-I

isPomia,
,

n)- nlogn are poynomialExt(n) = n2
3

(t(n) = nogh or +(n)-2" are not polynomia .)

&en P = & L1 his a language decided by a

TM running in poynomial time 3

* We think of problems in P as those that have

relatively efficient algorithms.

The Famous Class "p" : Discussion/Motivation

Q1 : Why polynomial time ? Why not linear time or
quadratic time ?

Valid point.

If some program runs in 1000 time that certainly
T

is it feasibly solvable

If some problem XP
then we can say

for sure that

it is infeasible
to solve in the worst case

Typical polytime algs actually
run in ame nor
i orn

so placing
a problem in P usually means it is hopeful

that it can be soled fairy efficiently
Still

,
it is important after placing a problem in

P
,

to find

or truly fast (ie. O(n) or Onlogn) time) algorithm

The Famous Class "p" : Discussion/Motivation

Q2 : TMs are so slow . Why don't he define "P" for a
better model of computation

Also good point . Really we want to consider a more

realistic model
like multiye TMs, or randomaccess machines

But the simulation of these by Ordinary iMs is

piyal time ,
so if some problem has a

poltime alg in some other model it will

usually also have a pultime TM algorithm

-
one big exception :

quantum computers

The Famous Class "p" : Discussion/Motivation

Q3 : Why worst-case runtime ?
&

Another good point .

Just because a problem is
hard on some inputs,

this isn't the whole story,

It may be very easy
to solve on 'typical inputs

Example : whole field
of machine learning , chatgpt

- It may
be easy to get

a very goodapproximation
in polytime even if solving optimally is not in P

again , understanding worst case complexity is a startingpoint
ideal : solve exactly in poytime. If not possible see if

Y

efficient on ang , or easy to approximate

some Problems in P

① St connectivity : given graph g
,
find length of shortest

path from
A to F

A B

:F-
If m = Hedges

/
Naive solu : try all possible paths-n ! paths ↑

runtime -n! z zlogh
mlogn

Better sol : 0(n +m) n = # vertices F Enlogn&
m= + edges

some Problems in P

② Primes : given x in binary , is x prime ?

Naive alg : try to divide x by 2
,
3
,
4.....,
X

Runtime :~X steps

= exponential in 1x/

Hight Nortuvial alg : Primes P

some Problems in P X
=0 y = 0

For ... n

③ All Regular , CEL's are

in⑨ graph connectivity :

given g ,
is there a path between

every pair of
vertices in g ?

nm - oc)

③ Linean Programming : 0(nm)

quen
inean set of constraints and

Linea objective function,
Find

ophmal solution (over R

⑥ perfect matchin : guen g,
does 7 a perfect matching ing ?

Heuesmarching
condas

⑨ ⑨

S

· ·

G : &
⑳ &

⑳

·

⑨ ⑨

⑧ ⑧

So g
has a PM

erfectmatching cont'd S

&

&

& &

&
&

&

G

this g has no PM.

~

0: When is it easy to Find a Needle
in Haystack?

Many of
the problems we are interested in are questions

about

searchingfor a sation
in a huge (exponential size) set of possible solutions.

T

#amples o have a clique of sizea

② Hamiltonian Path HAMPATH (g , S, t)

⑧ 8 ⑧ ->
A path from s to t that

↑ ↓
visits every vertexG :

O 8 G
&

exactly once
&

⑦
&

⑤
⑧

&

Does I have a clique
of size k ?

⑳

- -&D- g has
gi -↑ a--
& Size k clique in I "T
is a subset of vertices in

I
such that all pairs verticesJ
are connected by an edge .

~

0: When is it easy to Find a Needle
in Haystack?

Many of
the problems we are interested in are questions

about

searchingfor a sation
in a huge (exponential size) set of possible solutions.

T

#amples o have a clique of sizea

② Hamiltonian Path

In these examples it is always easy to verif a solutionY

But sometimes it is hard to find a solution

What characterizes NP is that it is always easy to
verify a solutionYout of"potential solutions)

the Seven more Famous) class NP

Per NP = 3 L1 L is a language decided by a Non deterministic
-

TM running in pogromial time 3

polytime : rentire is O(nK) for some Ko

-

Runtime of a Nondet TM I on w

max Runtime 1 M/W,)
Our all computation

paths

Let h be a Language ,
L = 30

, 13" pontime = poy (n)
↑ venifier for 7 is a TM V
-

V takes 2 inputs : v(W
,
c)

↑ extra input
input to L

Apolytime Verifier Vort is a TM Vlnc) such that
① V . runs in time poly (iv) Iwl-length of w

② UNEL EC such that VCW
, c) accepts

VWAL VC V (w
, c) rejects

DN (Alternative defi of NP)
LENP if there is a polytime verifier for

the Seven more Famous) class NP

Defu I NP = 3 L1 L is a language decided by a No deterministic
-

TM running in poynomial time 3

Equivalent Defn of NP

A verifier for Language L = 50,
13* is an algorithm V[

L = EW / V(W
,
c) accepts 3 where c is an additional alg.

string that we call a certificate or proof xi
A verifier is polynomial time if it runs in time

polynomial in IW1 .

* Note that if A is a polytime Verifier then 191 must

also be polynomial in IW) .

Yefnz NP = EL/ L has a polytime verifiers

Equivalence Between DefNs 1 andI

2
,

= 3 L1 L is accepted by a rondeterministic polytime algorithm

I = EL/ L has a polytime verifiers

① Le2Le2 :
2 3

Let Algorithm A be verifier for I running in time "

Nondet TM N : on Input W , IWEn

Nondeterministically select c, 14K
Run Von (w

,
c)

E Vaccepts (w, c) , accept , otherwise reject

Equivalence Between DefNs 1 andI

2
,

= 3 L1 L is accepted by a rondeterministic polytime algorithm

I = EL/ L has a polytime verifiers

② Le, LE2 :
2

Let N be a Nondeterministic TM accepting Land running
in time nK

Verifier A on(WC) :

Simulate N on w
,

where c is a description of the

Nondeterministic choices to make at each step

this computation path (described by c) accepts
then accept (W, c) ; otherwise reject

Examples of Languages in NP

① Any LeP is also in NP

Ventier V on input (W, c) : Ignore < and just
run polytime alg for L on inpret W. ↑

&

Yo & 2&E

② CLIQUE (g , 17) . g : (VE) IVER
soDosVerifier V on input (W = (g, K) , c) : 60

· check that a encodes a subset VIEV of ↑
17 vertices (g, 173)

· For all pairs of vertices ijev'check if
n = 6

(i
,j) is an edge

in E (i . e
, (ij) (E)

123456

:010 /10

AnotherExample
color

Theoremearable
Input is an undirected graphg . if g is planar
Accept g iff I has a proper 4-coloring

&

Example &
A proper 4-coloring assigns

⑳ a color (out of 4 colors)
e

to each vertex of GXg -> * -

such thatWedge (
,
j) in 9 ,

e color(i) A color(j)
0

4if I has a proper coloring Then ECst v(g , c) acceptsV (g
, c) :: 15 y has no poper 4 colori -> XL VCg

,
c) rejects

gi k=Y

· If C is the coloring in
8

picture
-

- V(g,4 = 0

8

-
6

&

O v(g
,
c) = 1

Ex

K=coloring

8

-
--

For this graph6

11 V-# V(g ,
c) = 0

Note on encodings of a graph
X 2

g = (V
,
E) ⑨ · V = 21

,
2
,
3
,
4
, 53

NI =M
5 ·3

·

4

z standard encodings

1
. Adjacency 45t : List all edges

zlogn =
2

· Zon
& (1 , 2) , (2, 3), (1 , 3) , (5, 2), 75, 4) ,33, 4)3

m .

Th edges in g
I 2345

2. Adjacency Matrix I
11000

200108 M(i, j) = 1 if) (ij) E
IVIX(v) matrix 311100

400 118

5 0 0 0 0 1 42

