Lecture 18

- · HW4 due Thurs at 11am (only one late HW allowed!)
- · See exercise solutions (posted!)

KW4

For proofs of decidable /recognitable /undecidable:

Explain:

- (1) If input & L then accept
- (2) If input &L then doesn't accept

We need to see both explanations

4W4

Last class: we defined Turing reductions (Chap 6.3) $\underbrace{\mathsf{Ex}}_{\mathsf{TM}} = \underbrace{\mathsf{A}}_{\mathsf{TM}} = \underbrace{\mathsf{B}}_{\mathsf{TM}}$

Book first defines a more restricted type of reduction called a mapping reduction (section 5.3)

We will skip this (since Turing reductions more general)

What Sections to read in Book

Can sky:

Chap 5 "Reduction via computation Hutories" pp. 220-226
Chap 5 Undecidability 9 Posts corresp. Problem pp 221-233

Read: Chap. 4: (especially 4.2)

Chap 5: • 5.1, pp 215-220

chap 5.

• 5.3 Mapping Reducibility (Useful but optional)

Chapter 6: • 6.3 Turing Reducibility

Today Chapter 4.2 + 5.1

goal: Prove Theorem from Lecture 17

Theorem A 15 Not decidable

TM

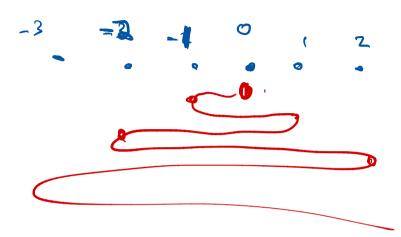
Main idea There are way more languages than TMs

ATM = { < M, w} | M is a TM that
accepts input w}

Countable Vs Uncountable Seti Set Mall Languages L= {0,13* uncountable Set of TMs are countable Defin A set S is countable if there exists an injective map of from S to IN (one-to-one) Injective: f(x) = f(y) => x = y (& never maps a different domain elements to same thing) Countable vs Uncountable Sets

Set of TMs are countable

Set of all languages


L= {0,13* uncountable}

(2)
$$\mathbb{Z} = \{2, -2, -1, 0, 1, 2, 3, --\}$$
 is countable $f(x) = 2x$ if $x \ge 0$ $-2x - 1$ if $x < 0$

(3)
$$N \times N$$
 is countable

(0,0), (0,1), (1,0), (0,2), (1,1), (2,0), ...

2 20 31

(4) The set of all TMs over Z= Eq13 is countable we saw how to represent any M by a unique string <M> = {0,1}* .'. We can order all M in lexicographic order 1 3 3 so the set of all recognizable languages over Egills is

Countable Vs Uncountable Sets

Set of TMs are countable

Set of all languages L= {0,13* uncountable

Countable vs Uncountable Sets

1839

Uncountable sets:

- (1) IR (the set of real numbers) proved by cantor, by diagonalization
- (2) The set of all Languages $L \in \{0,1\}^*$ (2) We'll prove this by diagonalization

Gen ral H's in [0,1)

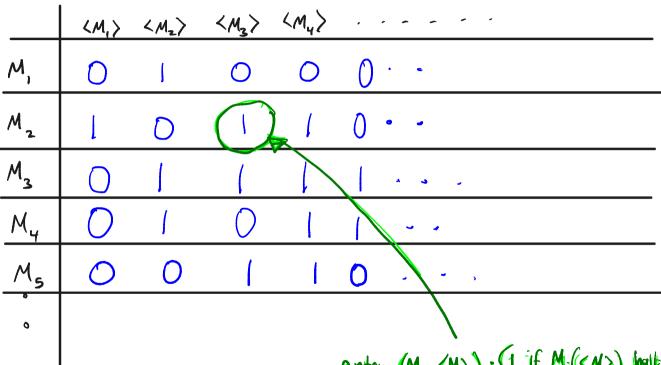
0.7543---

Many Languages are not r.e. (recognitable)!

Proof Idea Let &= {01}

- Every TM over £={0,1} is encoded by a unique string <M> E &*
- Thus every Turing recognitable language over {0,1} can be described/encoded by a string (M) & Et (the M that accepts L)
- · Thus the set of all Turing-recognizable languages is countable
- · But on the other hand the set of all languages over {0,1} is uncountable
- Thus most languages L = Et are not recognizable

Theorem There exists a Language $L = \{0,1\}^*$ that is not re (recognitable)

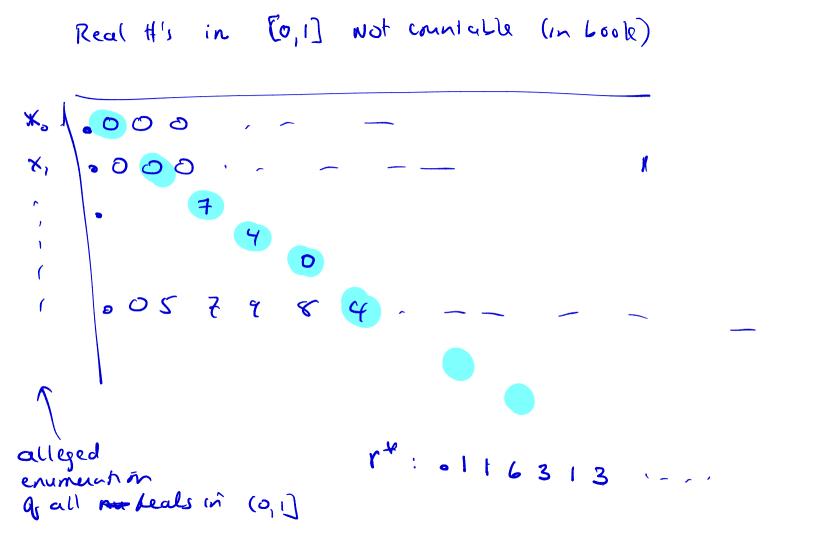

Pf (diagonalization)

Fix an enumeration of all TMs over {0,1} vsing our encoding of TMs M, Mz, Mz, M3, ...

order lexicographically by their encodings (so (M) < (M2) < ...)

Define D = { <M > | <M > enwdes TM M, and M on input <M > the Diagonal language

(M, w=(m)) (M) iff M does not accept w=(m)



entry (Mi, <Mj): (1 if Mi((<Mj)) houts and accepts

O if Mi((<Mj)) does not accept

Define D = { < M > | < M > enwdes TM M, and M on input < M > does not halt and accept }

	\(\mathbb{M}_1 \rangle = \mathbb{M}_2 \rangle = \mathbb{M}_4 \rangle \\ \mathbb{M}_1 \rangle = \mathbb{M}_2 \rangle = \mathbb{M}_4 \rangle \\ \mathbb{M}_2 \rangle = \mathbb{M}_1 \rangle = \mathbb{M}_2 \rangle = \mathbb{M}_1 \rangle = \mathbb{M}_2 \rangle = \mathbb{M}_1 \rangle = \mathbb{M}_2 \rangle = \mathbb{M}_2 \rangle = \mathbb{M}_1 \rangle = \mathbb{M}_2 \rangle = \mathbb{M}_2 \rangle = \mathbb{M}_1 \rangle = \mathbb{M}_2 \rangle = \mathbb{M}_2 \rangle = \mathbb{M}_2 \rangle = \mathbb{M}_1 \rangle = \mathbb{M}_2 \rangle = \mathbb{M}_2 \rangle = \mathbb{M}_1 \rangle = \mathbb{M}_2	
M,	0 0 0 0	
M	10110	-
M ₃	0 1	
M4	0 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
Ms	O O I I O MSTED	
0	D is the "opposite" of what is on diagonal that is: $D(M_i) = D(M_i)$ otherwise	onal alts and accepts
D :		

Theorem There exists a Language The \(\(\) \(\) that is not re (recognitable) Pf (diagonalization) Fix an enumeration of all TMs over {0,1} using our encoding of TMs M,, Mz, M3, ... order lexicographically by their encodings (so (M) < 4M2) < ...) D = { < M > | < M > enwdes TM M, and M on input < M > the

does not halt and accept }

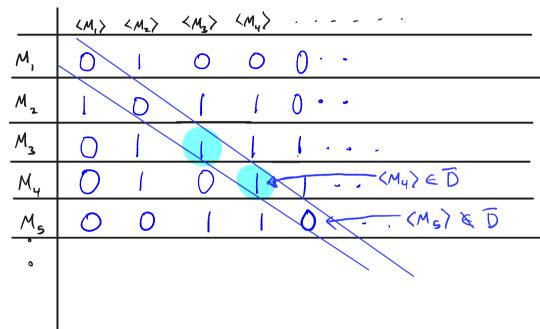
Called

The

Diagonal language Claim D is Not re (recognitable)

Pf By construction, for all TMs M_i over Σ , $\mathcal{L}(M_i) \neq D$ since $\langle M_i \rangle \in D$ If and only if $\langle M_i \rangle \notin \mathcal{L}(M_i)$

Define D = { < M > | < M > enwdes TM M, and M on input < M > does not halt and accept }


	(M,) (M2) (M3) (M4)
M,	0 1 0 0 0
M2	10110
M ₃	0 1 1 1
M ₄	0 1 0 18 (My) & D
Ms	O O I O (Ms) E D
•	

Claim D is not re. (recognitable)

Pf By construction, for all TMs M; over E,

L(Mi) * D since <Mi>ED if and only if <Mi>EX(Mi)

Define $\overline{D} = \{ \langle M \rangle \mid \langle M \rangle \text{ enwdes TM M, and M on input } \langle M \rangle \text{ accepts} \}$

 \overline{D} is what is on the diagonal That is $\overline{D}(M_i) = \begin{cases} 1 & \text{if } M_i(M_i) \text{ accepts} \\ 0 & \text{otherwise} \end{cases}$

Claim D is recognizable

Pf: TM for D on injut <M>

· Check to see if injut is legal encoding of a TM if not, reject

· otherwise run M on <M>:

If simulation halts and accepts -> halt + accept

Thus we have shown: D is recognizable D is not recognizable Question: Is D decidable? By closure property, D Not decidable Conclusión: D not recognizable (so also not decidable) Dis recognizable, but not decidable

Back to Am: (We want to show Am Not decidable)

Lemma D & AIM

Pf: Assume N be a decider for ATM. Then we build a decider N' for D:

N: on input <M>:

Run N on (<M><M>)

If N accepts -> accept (M)

Otherwise if N rejects -> half + reject <M>)

Thin A TM 11 not decidable Assume for sale of contradiction Am 11 lecidable, and cet N be a deciden for Am Then using N, we can construct a decider, N' for D So it Dom to decidably then so u D, Contadiction But D not decidable!

Theorem Am Not decidable But D Not decidable. - Am not decidable (

By Lemma if Am decidable then D decidable 1. D = { (M) | M on input (M) does not accept } is not recognitable (by "diagonalization") 2. D 71 recognizable D Not decidable (by dosume property) 3. And not decidable (by reduction D = ATM)

SUMMARY

Diagonal Language

Diagonal Language

is not recognizable

Proof by diagonalization

(3) ATM = { < M, w} | M accepts w }
is recognitable but not decidable