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e Two parties Alice and Bob wish to evaluate a function f : X xY —
{—1,+1} where Alice holds x € X and Bob y € Y.

e How much communication is needed? Many different models have been
studied.

e Randomized complexity R.(f) with error probability e.

e Quantum complexity Q.(f) without shared entanglement and Q7(f)
with shared entanglement.
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Open questions

e Many open questions remain relating the power of these different models.

e Are R.(f) and QI(f) polynomially related for all total functions f7
Largest gap known is a power of 2.

e How much can entanglement help? What is the largest gap between
Q:(f) and QI(f). Currently, the only uses of entanglement to save
communication are as a source of shared randomness, and for superdense
coding.
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Lower bound techniques

Nearly all lower bounds known for R, also work in the more powerful
model Q)F, up to small factors.

Exceptions: “Corruption bound” which can show €2(n) lower bound on
randomized complexity of disjointness [KS87, Raz92].

“log rank bound” known to work for (). [BWO01] but not Q7.

In this talk we focus on the log rank bound.



Log rank lower bound

e To a function f : X xY — {—1,41} we associate a X-by-Y
communication matrix My, where M¢|x,y| = f(z,y).

e The log rank bound states D(f) > logrk(My) [MS82].

e One of the greatest open problems in communication complexity is the
log rank conjecture [LS88], which states that D(f) < (logrk(My))* for
some constant k.
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How a protocol partitions communication matrix

Bob
Y
001
010 011
Alice 000
X 101
111 110
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e For randomized and quantum models, the relevant quantity is no longer
rank, but approximation rank. For a sign matrix A:

rko(A) = mgn{rk(B) : 1 < Ali, j]Bli, j] < a}

e Buhrman and de Wolf show

for a = 1/(1 — 2e).
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Main result

e Approximation rank is essentially the strongest technique available to
show lower bounds on quantum communication complexity. But it
suffers from two drawbacks: it is not known to be a lower bound on
complexity with entanglement, and it can be quite difficult to compute
In practice.

e \We show

Qc(f) = Q(logrka(My))
for a = 1/(1 — 2¢).

e We further give a (randomized) polynomial time approximation algorithm
for logrk,(A).
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Yo Norm

e Both results will be obtained by relating approximation rank to a norm
known as 75 introduced to quantum communication complexity by Linial

and Shraibman [LS07].

e Linial and Shraibman show that ~5 gives a lower bound on quantum
communication complexity with entanglement, and that it generalizes
many other bounds in the literature, including discrepancy [Kre95],
Fourier bounds [Kla01], trace norm method [Raz03].

e On the other hand, rk(A4) > v2(A)2.
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~vo norm definition

e For a matrix A, define

72(4) = min c(X)e(Y)

where ¢(X) is the largest {5 norm of a column of X.

e As with rank, we also consider an approximation version: for a sign
matrix A

18(4) = min{(B) : 1 < Ali, j]Bli, ] < a}.
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Yo norm remarks

e In matrix analysis known as “Schur/Hadamard product operator/trace

norm,”

e Schur (1911) showed that v5(A) = max; A;; if A positive semidefinite.

e \We will also use the dual norm:

: = max A, B)
34) = B y2(DB)

— max ZA[iaj] (Ui, vj)

ui,vj: —
|uil|=lvjl|l=1 *J



Dual norm

e The dual norm 735 shows up in XOR games with entanglement.

e This is a game between a verifier and two provers Alice and Bob. Alice
and Bob share an entangled state. Verifier wants to compute some
function f: X xY — {—1,+1}.

e Verifier sends questions x to Alice, y to Bob with probability 7 (x,y).

e Alice/Bob respond with a;,b, € {—1,4+1} with the aim that a,b, =

f(z,y).



Tsirelson’s characterization

e Look at the correlation, under m between the function f and the output
of the protocol.

e Tsirelson's characterization of XOR games gives

max Z?r v.y)f(2,y)asby = max Y w(w,y)Myle,y)(us, vy)
Strategles ||U»x||:||’Uy||:1 -

= Y3 (Myom).
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Yo communication complexity lower bound

Tsirelson’'s characterization can give an alternative proof that -
lower bounds quantum communication complexity with entanglement
(observed by Harry Buhrman).

Recall (M. M >
frig OT
Yo(My) = max —;
d gm 5 (Mg o)
Consider a c-qubit protocol for f. Using teleportation, we may transform

this into a protocol that uses at most 2¢ classical bits.

We will now show that 5 (M, o) is large by designing an XOR strategy
for the provers.



XOR strategy for provers

We design an XOR strategy P. Alice and Bob share a random 2c bit
string r. Alice and Bob simulate actions of the protocol for f, assuming
it message sent is ;.

If Alice/Bob notices inconsistency with protocol outputs a random bit.

If Alice consistent outputs f(z,y). If Bob consistent outputs 1.

Then

Yo(Mgom) =Y w(z,y)g(z,y)Px,y) = 2% > wlx,y)g(,y) f(x,y)

T,y T,y
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XOR strategy for provers

e From the last slide we have

1(Myom) > 3w, 4)g(w, y) P, ) = g 3,99, 5) f(2,)

T,y xz,Yy

e As g, m were arbitrary this gives

M: M
maX< *f7 gO’7T> §22C
g Y5 (Mgom)

which implies Q*(f) = Q(logv2(My)).The proof for bounded-error
complexity follows similarly.



Relating 7> and rank

e Now that we have introduced ~5, we can state our main theorem.

e For any M-by-N sign matrix A and constant o > 1

< 1ko(A) = O (1£(A)?log(MN))?



Remarks

e When o = 1 theorem does not hold. For equality function (sign matrix)
I‘k(QIN — 1N) > N — 1, but

Y2(2In — 1n) < 2%2(IN) + 72(1n) = 3,
by Schur's theorem.

e Equality example also shows that the log N factor is necessary, as
approximation rank of identity matrix is 2(log N) [Alon 08].



Advantages of

e <5 can be formulated as a max expression

af gy oo (L a)(A B) 4 (1 — a)f(B)
(A =g 293 (B)

e 75 is polynomial time computable by semidefinite programming

e ~5 is also known to lower bound quantum communication with shared
entanglement, which was not known for approximation rank.
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Proof sketch

e For the proof, we will use the primal formulation of ~s:

72(4) = min c(X)e(Y)

xTy=a
where ¢(X) is the maximum £ norm of a column of X.

e Rank can also be phrased as optimizing over factorizations: the minimum
K such that A = X'Y where X,Y are K-by-N matrices.
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First step: dimension reduction

e Look at XTY = A’ factorization realizing v, 7¢(A). Say X,Y are
K-by-N matrices.

e Know that the columns of X,Y have squared ¢5 norm at most v5(A'),
but X, Y might still have many rows...

e Johnson-Lindenstrauss lemma: let R be a random K’-by-K matrix

0 /
Pr |(Ru, Rv) = {u,0) = S([[ul]® + []o]?) | < =K/



First step: dimension reduction

e Consider RX and RY where R is random matrix of size K’'-by-K for
K' = O(v,7¢(A)%log N). By Johnson-Lindenstrauss lemma whp all the
inner products (RX); (RY); ~ X}'Y; will be approximately preserved,
up to additive factor of e.



First step: dimension reduction

e Consider RX and RY where R is random matrix of size K’'-by-K for
K' = O(v,7¢(A)%log N). By Johnson-Lindenstrauss lemma whp all the
inner products (RX); (RY); ~ X}'Y; will be approximately preserved,
up to additive factor of e.

e This shows there is a matrix A” = (RX)T(RY) which is a 1+ 2¢
approximation to A and has rank O(y;7¢(A4)%log N).



Second step: Error reduction

Now we have a matrix A” = (RX)T(RY') which is of the desired rank,
but is only a 1 + 2¢ approximation to A, whereas we wanted an 1 + ¢
approximation of A.

Idea [Alon 08, Klivans Sherstov 07]: apply a polynomial to the entries of
the matrix. Can show rk(p(A)) < (d+1)rk(A)¢ for degree d polynomial.

Taking p to be low degree approximation of sign function makes p(A”)
better approximation of A. For our purposes, can get by with degree 3
polynomial.

Completes the proof rk,(A) = O (75‘(14)2 10g(N))3



Polynomial for Error Reduction
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Open questions

e We have shown a polynomial time algorithm to approximate rk,(A), but
ratio deteriorates as a — o0.

< tka(A) < O (1§(A)?log(N))”

e For the case of sign rank, lower bound fails! In fact, exponential gaps
are known [BVWOQ7, Sherstov07]

e Polynomial time algorithm to approximate sign rank?
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Open questions

e Upper bound in terms of &7 Linial and Shraibman show R.(f) =
O(v5°(My)?).

e By showing a relation between ~§ and approximation rank, we have
simplified the picture of lower bound techniques. What is relationship
between log 75 and corruption bound?



