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Direct product theorems: Why should Gogle be
interested?

e Say you want to accomplish k independent tasks. . .
improve search algorithm, fight youtube copyright lawsuits, buy some
promising new companies, hire some Rutgers graduates . . .

e What is the most effective way to distribute your limited resources to
achieve these goals?

e |s it possible to accomplish all of these tasks while spending less than
the sum of the resources required for the individual tasks?
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Direct product theorems

Let f, g be Boolean functions. Say you want to compute
F(z1,22) = f(z1) ® g(x2).

Obviously can compute f and then compute g. Can you do better?

Direct sum theorem: To compute F' need sum of resources needed for f
and g.

With obvious algorithm, if can compute f,g with success probability
1/2 + €/2, then succeed on F with probability 1/2 + ¢2/2.

Direct product theorem: advantage decreases exponentially
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Applications

e Hardness amplification

— Yao's XOR lemma: if circuits of size s err on f with non-negligible
probability, then any circuit of some smaller size s’ < s will have small
advantage over random guessing on ®F_, f.

e Soundness amplification

— Parallel repetition: if Alice and Bob win game G W,ith probability € < 1
then win k independent games with probability €¥ < e.

e Time-space tradeoffs: Strong DPT for quantum query complexity of
OR function [A05, KSWOQ7] gives time-space tradeoffs for sorting with

quantum computer.
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Background

e Shaltiel [SO3] started a systematic study of when direct product theorems
might hold.

e Showed a general counter-example where strong direct product theorem
does not hold.

e In light of counter-example, we should look for direct product theorems
under some assumptions—say lower bound is shown by a particular
method.



Discrepancy

e For a Boolean function f: X xY — {0,1}, let M, be sign matrix of f
M¢[z,y] = (=1)/®¥) . Let P be a probability distribution on entries.

discp(f) = max |ZCT(Mf o P)y| = ||Myo P|c
ze{0,1}1 Xl
ye{0,1}1Y]



Discrepancy

e For a Boolean function f: X xY — {0,1}, let M, be sign matrix of f
M¢[z,y] = (=1)/®¥) . Let P be a probability distribution on entries.

discp(f) = max |ZCT(Mf o P)y| = ||Myo P|c

x6{0,1}|X|
ye{0,1}1Y]

o disc(f) = minp ||Mso P||c.



Discrepancy

e For a Boolean function f: X xY — {0,1}, let M, be sign matrix of f
M¢[z,y] = (=1)/®¥) . Let P be a probability distribution on entries.

discp(f) = max |ZCT(Mf o P)y| = ||Myo P|c
ze{0,1}1 Xl
ye{0,1}1Y]

o disc(f) = minp ||Mso P||c.

e Discrepancy is one of most general techniques available:

D(f) =z R(f) =z QZ(f) = (1Ogdisi(f)>



Distributional Complexity

e Let R be a deterministic c-bit protocol, and consider the correlation of
R with M; under distribution P. Say that R outputs R; in the 7"
rectangle:

corp(R, My) = ZP[CC,Q]R[%?J]MJC[%ZJ]
.,y
20
= > Rix{ (MjoP)y;
i=1
< 2°iscp(My)
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Results

e [Shaltiel 03] showed diSCU(g)k(M}X)k) — O(dich(Mf))k/3
Open question: does product theorem hold for general discrepancy?

e For any probability distributions P, Q):

discpg(A ® B) < 8 discp(A)disco(B)

e Product theorem also holds for disc(A) = minp discp(A):

1
6—4disc(A)disc(B) < disc(A ® B) < 8 disc(A)disc(B)
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Optimality

Discrepancy does not perfectly product

Consider the 2-by-2 Hadamard matrix H (inner product of one bit)
1 1
=l
Uniform distribution, x = y = |1 1], shows disc(H) = 1/2

On the other hand, disc(H®*) = ©(27%/2).
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Some consequences

e Strong direct product theorem for average-case complexity: If correlation
of M¢ with c-bit protocols is at most 2~¢, shown by discrepancy method,
then correlation of M]‘?k with kc-bit protocols is at most 2F(—¢+3)

e Direct sum theorem for randomized, quantum bounds shown by
discrepancy method

e Direct sum theorem for weakly unbounded-error protocols: randomized
model where

— Pr[R[z,y] = f(x,y)] > 1/2 for all z,y
— If always succeed with probability > 1/2 + ¢, cost is number of bits
communicated + log(1/e).



Product theorem: discpgg(A ® B) < 8 discp(A)disco(B)

e Let's look at discp again:

discp(A) = ||Ao P|l¢

e This is an example of a quadratic program, in general NP-hard to
evaluate.

e In approximation algorithms, great success in looking at semidefinite
relaxations of NP-hard problems.

e Semidefinite programs also tend to behave nicely under product!
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Proof: first step

Semidefinite relaxation of cut-norm studied by [Alon and Naor 06].
First step: go from 0/1 vectors to 1 vectors. Look at the norm

|A][om1 = max z' Ay
CB,yE{—l,l}n

Simple lemma shows these are related.

IAlle < [[Allco—1 < 4[| Allc

In fact, several discrepancy results proceed by bounding || A||sc—1
[Raz00, FGO5, She07].
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Proof: second step

e Now go to semidefinite relaxation:

|Alloo—1 < max Y A j{u,vy)

UiV .
Juil[=[lvjll=1 *J

e Grothendieck's Inequality says

max > Aj j(ui,v5) < Kgl|Alloo—

’Uxi,'Uj —
lusil|[=llvjl|l=1 *J

where 1.67 < Kg < 1.782...



Proof: last step

Let
g(A) = 112%); ZAi,j<uz',‘Uj>
Jugl|=]lv;ll=1 %J

We now have (1/4Kg) 0(Ao P) < discp(A) < o(Ao P)
All that remains is to show o(A; ® As) = g(A1)o(As).

In fact, this has already been shown in the literature [FL92, CSUUO07,
MS07]
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Alice

V]

Verifier

P[s,t] chooses (s,t), desires ab=V(s,t)
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Connection to XOR games

Let P|s,t] be the probability the verifier asks questions s, ¢, and Vs, t]| €
{—1,1} be the desired response. Provers send a,b € {—1,1} trying to
achieve ab = Vs, t].

Best correlation provers can achieve with V' is ||V o Pl[oo—1

By characterization of Tsirelson, best correlation of entangled provers is
o(V o P) [Tsirelson80, CHTWO04]

Product theorem for o gives parallel repetition theorem for classical or
entangled games.
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Next theorem: Product for disc(A)

disc(A) = minp ||A o P|lc
Linial and Shraibman 07 introduce a quantity v5°, and show

1 1
< disc(4) < —
875°(A) 4 75°(A)

Taking this as a black box, just need to show 73° (AR B) = v3°(A)~3°(B)

In fact, % = minp o (Ao P).
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A communication complexity short story

For deterministic complexity, rank is all you need . . .
logrk(My) < D(f)
rk(My) polynomial time computable in length of truth table of f

Log rank conjecture: 3¢ : D(f) < (logrk(My))*



Bounded-error models

o Approximate rank: rk(A) = ming{rk(B) : |A — B||s < €}.
e For randomized and quantum complexity

-, log Ig<(f1)

Re(A) > Qc(A)

e But these approximate ranks are very hard to work with . . .
Borrow ideas from approximation algorithms.
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Relaxation of rank

Instead of working with rank, work with convex relaxation of rank

Let i singular value be o;(A) = /\;(AT A)
Remember, [[Alle = Y05 0u(A), A} = 32, 03(A)?

By Cauchy-Schwarz inequality we have

1A,

< rk(A)
1A%



Relaxation of rank

e Not a good complexity measure as too uniform.
e Since rk(A o uv?) < 1k(A) can remedy this as follows

A T2
max |4 UUTHZT <r1k(A)
willul|=|lvl|=1 [|A o wvT|| %

e Simplifies nicely for a sign matrix A

max A ouv?||?. < rk(A)

w,v:||ul|=[lv]|=1
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Also known as . ..

e This bound has many equivalent forms.

e As ||A|| = max, , Tr(Avu’) = maxp, ||, <1 Tr(AB) one can show

max [Aowv®||? = max ||Ao Bl
w,vi|[ull=[lv[|=1 B:|| Bl|¢r<1
= max |[Ao Bj

Bi||Bli<1
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aka . . . Linial and Shraibman’s v,

e Coming from learning theory, Linial and Shraibman define

BA) = min_ r(X)e(Y),

r(X) is largest {5 norm of a row of X, similarly ¢(Y') for column of Y

e By duality of semidefinite programming

Y2 (A) = max | A o uv™||¢

w,v:||ul|=[lv]|=1



Different flavors of -

e For deterministic complexity

A)= _ mi X)e(Y) = A0 Qe
(4 = min r(X)e(Y) = max_ [[4eQl

e For randomized, quantum complexity with entanglement

BA) = L ya BB acry ")

e For unbounded error

0o _ i X)e(Y) = A
5 x,y:{%lﬁéyof( )e(Y) @:||@||tf~r%aff@oAon ° Ql¢r
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Direct product for disc(A): Final step

e Using max and min formulations of v5° easy to show product theorem
o If Q4,Qp are optimal witnesses for A, B respectively, then
2 (A®B) > [(A® B)o (Qa®QB)|ltr=1[(A0Qa) ® (BoQp)|:w
and Q4 ® Qg agrees in sign everywhere with A ® B

o If A= X,Y4 and B = XYy are optimal factorizations, then

V2 (A® B) <7(Xa® Xp)e(Ya®Yp) =1r(Xa)c(Ya)r(Xp)c(Yp)



Future directions

e Bounded-error version of v

v5(A) = min max || B o U’LLT||t7~
B U,V
1<AoBlJi,j]<1+e€

e Lower bounds quantum communication complexity with entanglement
[LS07].  Strong enough to reprove Razborov's optimal results for
symmetric functions.

e Does 5 obey product theorem? Would generalize some results of
[KSWO06]



Composition theorem

e What about functions of the form f(g(x1,y1),9(x2,y2),...,9(Xn,yn))?
e When f = @ lose the tensor product structure . . .

e Recent paper of [Shi and Zhu 07] show some results in this direction—use
bound like 75 on f but need g to be hard.



Open problems

e Optimal Q(n) lower bound for disjointness can be shown by one-sided
version of discrepancy. Does this obey product theorem?

e [Mittal and Szegedy 07] have begun a systematic theory of when a
product theorem holds for a general semidefinite program. ~5,0 fit in
their framework, but v5° does not seem to. Can we extend this theory
to handle such cases?



