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Direct product theorems: Why should Google be
interested?

• Say you want to accomplish k independent tasks. . .
improve search algorithm, fight youtube copyright lawsuits, buy some
promising new companies, hire some Rutgers graduates . . .

• What is the most effective way to distribute your limited resources to
achieve these goals?

• Is it possible to accomplish all of these tasks while spending less than
the sum of the resources required for the individual tasks?
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Direct product theorems

• Let f, g be Boolean functions. Say you want to compute
F (x1, x2) = f(x1)⊕ g(x2).

• Obviously can compute f and then compute g. Can you do better?

• Direct sum theorem: To compute F need sum of resources needed for f
and g.

• With obvious algorithm, if can compute f, g with success probability
1/2 + ε/2, then succeed on F with probability 1/2 + ε2/2.

• Direct product theorem: advantage decreases exponentially
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Applications

• Hardness amplification

– Yao’s XOR lemma: if circuits of size s err on f with non-negligible
probability, then any circuit of some smaller size s′ < s will have small
advantage over random guessing on ⊕k

i=1f .

• Soundness amplification

– Parallel repetition: if Alice and Bob win game G with probability ε < 1
then win k independent games with probability ε̄k′ < ε.

• Time-space tradeoffs: Strong DPT for quantum query complexity of
OR function [A05, KSW07] gives time-space tradeoffs for sorting with
quantum computer.
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Background

• Shaltiel [S03] started a systematic study of when direct product theorems
might hold.

• Showed a general counter-example where strong direct product theorem
does not hold.

• In light of counter-example, we should look for direct product theorems
under some assumptions—say lower bound is shown by a particular
method.
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Discrepancy

• For a Boolean function f : X × Y → {0, 1}, let Mf be sign matrix of f
Mf [x, y] = (−1)f(x,y). Let P be a probability distribution on entries.

discP (f) = max
x∈{0,1}|X|

y∈{0,1}|Y |

|xT (Mf ◦ P )y| = ‖Mf ◦ P‖C

• disc(f) = minP ‖Mf ◦ P‖C.

• Discrepancy is one of most general techniques available:

D(f) ≥ Rε(f) ≥ Q∗
ε(f) = Ω

(
log

1
disc(f)

)



Distributional Complexity

• Let R be a deterministic c-bit protocol, and consider the correlation of
R with Mf under distribution P . Say that R outputs Ri in the ith

rectangle:

corP (R,Mf) =
∑
x,y

P [x, y]R[x, y]Mf [x, y]

=
2c∑

i=1

Ri χT
i (Mf ◦ P )χ′i

≤ 2cdiscP (Mf)
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Results

• [Shaltiel 03] showed discU⊗k(M⊗k
f ) = O(discU(Mf))k/3

Open question: does product theorem hold for general discrepancy?

• For any probability distributions P,Q:

discP⊗Q(A⊗B) ≤ 8 discP (A)discQ(B)

• Product theorem also holds for disc(A) = minP discP (A):

1
64

disc(A)disc(B) ≤ disc(A⊗B) ≤ 8 disc(A)disc(B)
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Optimality

• Discrepancy does not perfectly product

• Consider the 2-by-2 Hadamard matrix H (inner product of one bit)

H =
[

1 1
1 −1

]

• Uniform distribution, x = y = [1 1], shows disc(H) = 1/2

• On the other hand, disc(H⊗k) = Θ(2−k/2).
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Some consequences

• Strong direct product theorem for average-case complexity: If correlation
of Mf with c-bit protocols is at most 2−`, shown by discrepancy method,
then correlation of M⊗k

f with kc-bit protocols is at most 2k(−`+3)

• Direct sum theorem for randomized, quantum bounds shown by
discrepancy method

• Direct sum theorem for weakly unbounded-error protocols: randomized
model where

– Pr[R[x, y] = f(x, y)] ≥ 1/2 for all x, y
– If always succeed with probability ≥ 1/2 + ε, cost is number of bits

communicated + log(1/ε).



Product theorem: discP⊗Q(A⊗B) ≤ 8 discP (A)discQ(B)

• Let’s look at discP again:

discP (A) = ‖A ◦ P‖C

• This is an example of a quadratic program, in general NP-hard to
evaluate.

• In approximation algorithms, great success in looking at semidefinite
relaxations of NP-hard problems.

• Semidefinite programs also tend to behave nicely under product!



Proof: first step

• Semidefinite relaxation of cut-norm studied by [Alon and Naor 06].

• First step: go from 0/1 vectors to ±1 vectors. Look at the norm

‖A‖∞→1 = max
x,y∈{−1,1}n

xTAy



Proof: first step

• Semidefinite relaxation of cut-norm studied by [Alon and Naor 06].

• First step: go from 0/1 vectors to ±1 vectors. Look at the norm

‖A‖∞→1 = max
x,y∈{−1,1}n

xTAy

• Simple lemma shows these are related.

‖A‖C ≤ ‖A‖∞→1 ≤ 4‖A‖C

• In fact, several discrepancy results proceed by bounding ‖A‖∞→1

[Raz00, FG05, She07].
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Proof: second step

• Now go to semidefinite relaxation:

‖A‖∞→1 ≤ max
ui,vj

‖ui‖=‖vj‖=1

∑
i,j

Ai,j〈ui, vj〉

• Grothendieck’s Inequality says

max
ui,vj

‖ui‖=‖vj‖=1

∑
i,j

Ai,j〈ui, vj〉 ≤ KG‖A‖∞→1

where 1.67 ≤ KG ≤ 1.782 . . .



Proof: last step

• Let
σ(A) = max

ui,vj

‖ui‖=‖vj‖=1

∑
i,j

Ai,j〈ui, vj〉

• We now have (1/4KG) σ(A ◦ P ) ≤ discP (A) ≤ σ(A ◦ P )

• All that remains is to show σ(A1 ⊗A2) = σ(A1)σ(A2).

• In fact, this has already been shown in the literature [FL92, CSUU07,
MS07]



Connection to XOR games

Verifier

Alice Bob

P[s,t] chooses (s,t), desires ab=V(s,t)

s t

a b
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Connection to XOR games

• Let P [s, t] be the probability the verifier asks questions s, t, and V [s, t] ∈
{−1, 1} be the desired response. Provers send a, b ∈ {−1, 1} trying to
achieve ab = V [s, t].

• Best correlation provers can achieve with V is ‖V ◦ P‖∞→1

• By characterization of Tsirelson, best correlation of entangled provers is
σ(V ◦ P ) [Tsirelson80, CHTW04]

• Product theorem for σ gives parallel repetition theorem for classical or
entangled games.
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Next theorem: Product for disc(A)

• disc(A) = minP ‖A ◦ P‖C

• Linial and Shraibman 07 introduce a quantity γ∞2 , and show

1
8γ∞2 (A)

≤ disc(A) ≤ 1
γ∞2 (A)

• Taking this as a black box, just need to show γ∞2 (A⊗B) = γ∞2 (A)γ∞2 (B)

• In fact, 1
γ∞2 (A) = minP σ(A ◦ P ).
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A communication complexity short story

• For deterministic complexity, rank is all you need . . .

• log rk(Mf) ≤ D(f)

• rk(Mf) polynomial time computable in length of truth table of f

• Log rank conjecture: ∃` : D(f) ≤ (log rk(Mf))`



Bounded-error models

• Approximate rank: r̃k(A) = minB{rk(B) : ‖A−B‖∞ ≤ ε}.

• For randomized and quantum complexity

Rε(A) ≥ Qε(A) ≥ log r̃k(A)
2

• But these approximate ranks are very hard to work with . . .
Borrow ideas from approximation algorithms.
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Relaxation of rank

• Instead of working with rank, work with convex relaxation of rank

• Let ith singular value be σi(A) =
√

λi(ATA)

• Remember, ‖A‖tr =
∑rk(A)

i=1 σi(A), ‖A‖2
F =

∑
i σi(A)2

• By Cauchy-Schwarz inequality we have

‖A‖2
tr

‖A‖2
F

≤ rk(A)



Relaxation of rank

• Not a good complexity measure as too uniform.

• Since rk(A ◦ uvT ) ≤ rk(A) can remedy this as follows

max
u,v:‖u‖=‖v‖=1

‖A ◦ uvT‖2
tr

‖A ◦ uvT‖2
F

≤ rk(A)

• Simplifies nicely for a sign matrix A

max
u,v:‖u‖=‖v‖=1

‖A ◦ uvT‖2
tr ≤ rk(A)
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Also known as . . .

• This bound has many equivalent forms.

• As ‖A‖ = maxu,v Tr(AvuT ) = maxB:‖B‖tr≤1 Tr(AB) one can show

max
u,v:‖u‖=‖v‖=1

‖A ◦ uvT‖2
tr = max

B:‖B‖tr≤1
‖A ◦B‖tr

= max
B:‖B‖≤1

‖A ◦B‖
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r(X) is largest `2 norm of a row of X, similarly c(Y ) for column of Y



aka . . . Linial and Shraibman’s γ2

• Coming from learning theory, Linial and Shraibman define

γ2(A) = min
X,Y :XY =A

r(X)c(Y ),

r(X) is largest `2 norm of a row of X, similarly c(Y ) for column of Y

• By duality of semidefinite programming

γ2(A) = max
u,v:‖u‖=‖v‖=1

‖A ◦ uv∗‖tr



Different flavors of γ2

• For deterministic complexity

γ2(A) = min
X,Y :XY =A

r(X)c(Y ) = max
Q:‖Q‖tr≤1

‖A ◦Q‖tr

• For randomized, quantum complexity with entanglement

γε
2(A) = min

X,Y :1≤XY ◦A≤1+ε
r(X)c(Y )

• For unbounded error

γ∞2 = min
X,Y :1≤XY ◦A

r(X)c(Y ) = max
Q:‖Q‖tr≤1,Q◦A≥0

‖A ◦Q‖tr
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Direct product for disc(A): Final step

• Using max and min formulations of γ∞2 easy to show product theorem

• If QA, QB are optimal witnesses for A,B respectively, then

γ∞2 (A⊗B) ≥ ‖(A⊗B) ◦ (QA ⊗QB)‖tr = ‖(A ◦QA)⊗ (B ◦QB)‖tr

and QA ⊗QB agrees in sign everywhere with A⊗B

• If A = XAYA and B = XBYB are optimal factorizations, then

γ∞2 (A⊗B) ≤ r(XA ⊗XB)c(YA ⊗ YB) = r(XA)c(YA)r(XB)c(YB)



Future directions

• Bounded-error version of γ2

γε
2(A) = min

B
1≤A◦B[i,j]≤1+ε

max
u,v

‖B ◦ vuT‖tr

• Lower bounds quantum communication complexity with entanglement
[LS07]. Strong enough to reprove Razborov’s optimal results for
symmetric functions.

• Does γε
2 obey product theorem? Would generalize some results of

[KSW06]



Composition theorem

• What about functions of the form f(g(x1, y1), g(x2, y2), . . . , g(xn, yn))?

• When f 6= ⊕ lose the tensor product structure . . .

• Recent paper of [Shi and Zhu 07] show some results in this direction—use
bound like γε

2 on f but need g to be hard.



Open problems

• Optimal Ω(n) lower bound for disjointness can be shown by one-sided
version of discrepancy. Does this obey product theorem?

• [Mittal and Szegedy 07] have begun a systematic theory of when a
product theorem holds for a general semidefinite program. γ2, σ fit in
their framework, but γ∞2 does not seem to. Can we extend this theory
to handle such cases?


