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Quantum query complexity

e Popular model for study

e Seems to capture power of quantum computing:

— Grover's search algorithm,
— Period finding of Shor's algorithm,
— Quantum walks: element distinctness, triangle finding, matrix

multiplication

e And we can also prove lower bounds!

— Polynomial method, Quantum Adversary method



Adversary method

e Adversary method developed by Ambainis, 2002.
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Adversary method

e Adversary method developed by Ambainis, 2002.

e Many competing formulations: weight schemes [Amb03, Zha05], spectral
norm of matrices [BSS03], and Kolmogorov complexity [LMO04].

e All these methods shown equivalent by Spalek and Szegedy, 2006.
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Reinventing the adversary

e \We introduce a new adversary method, ADV®E.

e ADVE(f) > ADV(f). We show a function where ADV(f) = O(m)
and ADV=(f) = Q(m!098).

e We essentially use that a successful algorithm computes a function, not
just that it can distinguish inputs with different function values.

e Our method does not face the limitations of previous adversary methods.



Quantum queries

e In classical query complexity, want to compute f(z) and can make
queries of the form x; =7 Complexity is number of queries on worst case
input.

e Quantum query—turn query operator into unitary transformation on
Hilbert Space H;y ® Hg @ Hw

Olz)|i)|2) — (=1)%|z)]i)|2).

e Can make queries in superposition.



Query algorithm

e On input x, algorithm proceeds by alternating queries and arbitrary
unitary transformations independent of x

6L) = U,OU,_; ... U;0Up|2)[0)]0).

e Output determined by complete set of orthogonal projectors {Ily, I1;}.
A T-query algorithm outputs b on input x with probability [|TI;|¢2)]|%.

e (Q2(f) is number T of queries needed by best algorithm which outputs
f(x) on input x with probability at least 2/3, for all z.



Matrix notation

e We will use matrix formulation of adversary method [BSS03]

e Spectral norm || A|| = /A1(AA*).

e Hadamard (entrywise) product (A o B)l[i, j| = Ali, j| - Bli, j].



Adversary method

Let f:{0,1}" — {0,1} be a Boolean function, and I' a symmetric
2"-by-2" matrix where I'|z,y] = 0 if f(x) = f(y). Then

1T
ADV(f) = .
(/) 20 ma [[T o Dy

D; is a zero-one matrix where D;|xz,y] = 1 if z; # y; and D;|z,y] = 0
otherwise.

Theorem [BSSO03]: Q2(f) = Q(ADV(f)).



The I' matrix

f(0) (1)
f(0) 0 A
f(1) N 0

Notice that the spectral norm of I' equals that of A.



The ' o D; matrix

f0) (1)
Ox 1x Oy 1y
f1(O) Ox 0 0 B
1x C
., o 0 C
f(1) ; 0
1y B O

The spectral norm of I' o Dy equals max{||B||, ||C||}.



Example: OR function

We define the matrix:

| 1000 0100 0010 0001
0000 | 1 1 1 1

The spectral norm of this matrix is V4, and the spectral norm of each
I'o D, is one.



Example: OR function

We define the matrix:

| 1000 0100 0010 0001
0000 | 1 1 1 1

The spectral norm of this matrix is V4, and the spectral norm of each
I'o D, is one.

Generalizing this construction we find Q2(OR,,) = Q(y/n).
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New adversary method

We remove the restriction to nonnegative matrices:

L
ADV*E(f) = | .
) = e T o D

Theorem: Qa(f) = QADVE(f)).

As we maximize over a larger set, ADV=(f) > ADV(f). It turns out
that negative entries can help in giving larger lower bounds!
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Separating the old and new

Old adversary faces “certificate complexity barrier’: ADV(f) <
v/ Co(f)C1(f), for total function f [Zha05,5506].

Given a graph on n vertices, does it contain a triangle? It is known that
ADV(f) < v/3n. Best upper bound n'3 [MSS05].

Given a list of n elements in {1,2,...,n}, are they all distinct?
ADV(f) < v/2n, and right answer is ©(n?/3) [AS04, Amb04].

We have example where ADV=(f) = Q((Co(f)C1(f))°5%9).
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The difficulty of being negative

Recall that running the algorithm on input x for t queries:
¢t) = U;OUs_1 ... U OUp|)|0)]0).

Write this as [¢!) = |x)|)L).

Let I' be an adversary matrix and ¢ a principal eigenvector. The
principal eigenvector tells us how to build a hard input— we feed algorithm
the superposition ) d,|x)|0)|0). State of algorithm after ¢ queries is
> 0alz) Wty Let pM [z, y] = 826, (YL|wl) be the reduced density matrix
of this state.
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Watch the density matrix. . .

Define a progress function based on p*) as

W = (T, p) = "Tla, y]650, (WL},
Y

Show three things:
o (W=

o (W] <2\/e(1-¢|T|

o W — WEFD| < 2max; ||T o Dy



Step Two: Old adversary

e Want to upper bound (I, p(T)) < 2,/¢(1 — €)||T|.

e Distinguishing principle: Successful algorithm can distinguish O-inputs
from 1-inputs with error probability ¢ means

T\, T
(Y [¥y) <2V e(l—¢)
e Thus as I' nonnegative

eryé* (5 |1y )

IA

2¢/€(1 —¢) Z L|x, y|650,
= 2ve(l =T



User’'s Manual

e Automorphism principle: If 7 is automorphism of the function then wlog,
[lz,y] =T|n(x),n(y)] in optimal adversary matrix.

e Composition principle: Let f : {0,1}" — {0,1}. Write f! = f and
F4:{0,13"" — {0,1} be

fd(a:) _ f(fd_l(iv(l)), fd_l(aj(Q)), o fd_l(aj(n))),

where z = (¢, 23 ... ). Then ADVE(f4) > ADV=(f)%
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e Originally used by Ambainis to separate quantum query complexity from
polynomial degree.

e Automorphism group isomorphic to Zsg, generated by (4321) x (0,0,0, 1).

e [he zeros: 0000, 0001, 0011, 0111, 1111
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Another example: Ambainis function

Originally used by Ambainis to separate quantum query complexity from
polynomial degree.

Automorphism group isomorphic to Zg, generated by (4321) x (0,0, 0, 1).
The zeros: 0000, 0001, 0011, 0111, 1111, 1110, 1100, 1000.

The ones: 0010, 0101, 1011, 0110, 1101, 1010, 0100,



Another example: Ambainis function

Originally used by Ambainis to separate quantum query complexity from
polynomial degree.

Automorphism group isomorphic to Zg, generated by (4321) x (0,0, 0, 1).
The zeros: 0000, 0001, 0011, 0111, 1111, 1110, 1100, 1000.

The ones: 0010, 0101, 1011, 0110, 1101, 1010, 0100, 1001.
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Another example: Ambainis function

0010

0101

1011
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Another example: Ambainis function

0010 | 0101 | 1011 | 0110 | 1101 | 1010 | 0100 | 1001
0000 a C d b d
0001 a C d b d
0011 a C d b d
0111 a C d b d
1111 d a C d b
1110 b d a C d
1100 d b d a C
1000 C d b d a




Another example: Ambainis function

0010 | 0101 | 1011 | O11 1101 | 1010 | 0100 | 1001

0000 a C d b d C

0001 a C d b d C

0011 a C d b d C
0111 C a C d b d
1111 d C a C d b
1110 b d C a C d
1100 d b d C a C
1000 C d b d C a




Another example: Ambainis function

0010 | 0101 | 1011 | 0110 | 1101 | 1010 | 0100 | 1001

0000 a C b d C a

0001 a d b d C a
0011 a C d b d C
0111 C a a C d b d
1111 d C a a C d b
1110 b d C a a C d
1100 d b d C a a C
1000 C d b d C a a




Another example: Ambainis function

0010 | 0101 | 1011 | 0110 | 1101 | 1010 | 0100 | 1001
0000 a C d b d C a b
0001 b a C d b d C a
0011 a b a C d b d C
0111 C a b a C d b d
1111 d C a b a C d b
1110 b d C a b a C d
1100 d b d C a b a C
1000 C d b d C a b a




The ' o D; matrix

1001 | 101 1011 101
0011 C b a d
0000 b C d d
0001 a d C b
0111 d d b C




Ambainis function continued

We try to maximize ||I'|| = 2(a 4+ b+ ¢+ d) while keeping spectral norm
of I'o D; at most 1.

a b C d 1T
ADV 0.75 0.50 0 0 25
ADV™ | 0.5788 | 0.7065 | 0.1834 | -0.2120 | 2.5136




Ambainis function continued

We try to maximize ||I'|| = 2(a 4+ b+ ¢+ d) while keeping spectral norm
of I'o D; at most 1.

a b C d 1T
ADV 0.75 0.50 0 0 2.5
ADV™ | 0.5788 | 0.7065 | 0.1834 | -0.2120 | 2.5136

The Ambainis function has polynomial degree 2. By iterating this function,
we obtain largest known separation between polynomial degree and quantum
query complexity, m vs m!327.



Open Questions

e Element distinctness: Best bound provable by old method is v/2n, but
right answer is n2/3, provable by polynomial method. Can new adversary
method prove optimal bound?

e Triangle finding: Best bound provable by old method is n, and best
known algorithm gives n'-3. Can new adversary bound give a superlinear
lower bound?

e ADVT(f)? is a lower bound on the formula size of f. Conjecture: The
bounded-error quantum query complexity of f squared is, in general, a
lower bound on the formula size of f.



