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Motivation: quantum query complexity

e In classical query complexity, want to compute some function f(x) and
have access to the input x by queries of the form z; =7 Complexity is
number of queries needed on worst case input.

e Model of quantum query complexity is attractive as captures many
quantum algorithms

— Grover's search algorithm,
— Period finding of Shor's algorithm,
— Quantum walks: element distinctness, triangle finding, matrix

multiplication

e And we can also prove lower bounds!



Ordered search problem

Complexity of finding a given item in an ordered list.

Given an ordered list 1 < 25 < ... < x,, want to find position of given
item z.

Ask queries of the form x; > 27

Equivalently can represent problem as querying bits of input and
identifying first occurrence of a ‘1. For n = 4, for example
S =4{1111,0111,0011,0001}.
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Complexity of ordered search

Classically answer is given by binary search: logn queries.

In quantum case, one can do better. But only by a constant!

Upper bounds: 0.526logn [FGGS99], 0.4391ogn [BJLO4], 0.433logn
[CLPO06], 0.321ogn [B-OHO07] (bounded-error)

Lower bounds: +/logn/loglogn [BWO98], logn/loglogn [FGGS98],
0.0833logn [Amb99], L Inn & 0.221log n [HNSO1]

What is this fundamental constant of quantum information?



Lower bounds: adversary method

Main lower bound techniques: polynomial method and adversary method.

Adversary method developed and improved in long series of Wgrks
[BBBV94, Amb00, HNS01, BSS03, Amb03, LM04, Zha04, SS06, HLS07]

Adversary bound is an optimization problem which can be written as a
semidefinite program.

1T
AD =
VU = max e T o D

where T'|x,y] = 0 if f(z) = f(y) and D;lx,y] = 1 if x; # y; and 0
otherwise.



The I' matrix

f(0) (1)
f(0) 0 A
f(1) N 0

Notice that the spectral norm of I' equals that of A.



The ' o D; matrix
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The spectral norm of I' o Dy equals max{||B||, ||C||}.
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Automorphism principle

e "“Whenever you have to deal with a structure endowed entity X try to
determine its group of automorphisms . . . you can expect to gain a deep
insight into the constitution of X in this way.”

—Hermann Weyl, Symmetry

e Using symmetry of problem can greatly simplify search for optimal
adversary matrices [HLSO7].

e Input to ordered search (for n =4) S = {1111,0111,0011,0001} Trivial
automorphism group!
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Automorphism principle

[FGGS99] extend inputs “to a circle”: S = {11110000,01111000,00111100,
00011110,00001111,10000111, 11000011, 11100001}

Now have cyclic structure, and query complexity changes by at most 1.

Using automorphism principle, can wlog reduce computation of adversary
bound to the matrix problem given at beginning of talk.

We show that the adversary method (even with negative weights) cannot
show lower bounds larger than =lnn + O(1).
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A word about the proof (non-negative case)

We exhibit solutions to both the primal and dual formulation of adversary
bound, and show that they match.

A key role in both directions is played by the lovely sequence

_ )
B =i

Key property: >7_ 3;3;—i = 1

Proof:
1

1 —

= By + B1z + Poz® + P23 + ...

N
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Optimal matrix

Recall we wish to show that a™(n) = Z?:_()l (

Define An(j) = 321 ™" BilBis .

A,00) — Ag(1) Au(1) — Ay(2) Au(2) — Ay(3)
Ag(1) — A4(2) Ay(2) — A4(3) A4(3)
A2) — Ay(3)  A(3)



Optimal matrix

2i\\ 2
Recall we wish to show that at(n) = 327~ (Q> .

Define An(j) = 321 ™" BilBis .

Ay(0) — Aa(1)  As(1) — Ag(2) As(2) — Au(3) Au(3)

A — Al(2) As(2) — As(3)  Au(3) 0

Ad2) = Al3)  Au(3) 0 0
A4(3) 0 0 0

To bound spectral norm, show that = = |33, B2, 01, Bo] is eigenvector with
eigenvalue 1.
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Conclusion

What is the quantum query complexity of ordered search?
Progress will require new algorithms or new lower bound techniques.

[BSS03] show quantum query complexity can be written as a semidefinite
program. Adversary bound can be viewed as a relaxation of this program.

Our optimal matrix can be used to give nearly elementary proof of
Hilbert's Inequality (need I'(1/2) = /7).



