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Given a matrix

An =


a0 a1 a2 a3 . . . an−1

a1 a2 a3 . . . an−1 0
a2 a3 . . . an−1 0 0
... . . . ... ...

an−2 an−1 0 0 0 0
an−1 0 0 0 0 0


how large can

∑
i ai be while ‖An‖ ≤ 1?
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
how large can

∑
i ai be while ‖An‖ ≤ 1? Let α(n) denote this optimal

value.



A good guess

The “half” Hilbert matrix

Zn =


1 1/2 1/3 1/4 . . . 1/n

1/2 1/3 1/4 . . . 1/n 0
1/3 1/4 . . . 1/n 0 0
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1/n 0 0 0 0 0
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1/(n− 1) 1/n 0 0 0 0
1/n 0 0 0 0 0


Then

∑
i ai ≈ ln(n). How to upper bound ‖Zn‖?
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Consider the Hilbert matrix

H =


1 1/2 1/3 1/4 . . .

1/2 1/3 1/4 . . . . . .
1/3 1/4 . . . . . .
1/4 . . . ...
... ... . . .


Hilbert showed (with improvement by Schur) that ‖H‖ ≤ π. Thus the

(normalized) half Hilbert matrix demonstrates α(n) ≥ ln(n)
π .
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Our main theorem

We show that the “half” Hilbert matrix gives essentially the optimal
bound:

α(n) =
ln(n)

π
+ Θ(1).

For the case of non-negative matrices, we are able to give the exact answer:

α+(n) =
n−1∑
i=0

((
2i
i

)
4i

)2

=
1
π
(lnn + γ + ln 8) + O(1/n)

and explicit matrices which realize this bound.

Note that (
2i
i

)
4i

≈ 4i/
√

πi

4i
=

1√
πi

.



Motivation: quantum query complexity

• In classical query complexity, want to compute some function f(x) and
have access to the input x by queries of the form xi =? Complexity is
number of queries needed on worst case input.

• Model of quantum query complexity is attractive as captures many
quantum algorithms

– Grover’s search algorithm,
– Period finding of Shor’s algorithm,
– Quantum walks: element distinctness, triangle finding, matrix

multiplication

• And we can also prove lower bounds!



Ordered search problem

• Complexity of finding a given item in an ordered list.

• Given an ordered list x1 ≤ x2 ≤ . . . ≤ xn want to find position of given
item z.

• Ask queries of the form xi ≥ z?

• Equivalently can represent problem as querying bits of input and
identifying first occurrence of a ‘1’. For n = 4, for example
S = {1111, 0111, 0011, 0001}.
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Complexity of ordered search

• Classically answer is given by binary search: log n queries.

• In quantum case, one can do better. But only by a constant!

• Upper bounds: 0.526 log n [FGGS99], 0.439 log n [BJL04], 0.433 log n
[CLP06], 0.32 log n [B-OH07] (bounded-error)

• Lower bounds:
√

log n/ log log n [BW98], log n/ log log n [FGGS98],
0.0833 log n [Amb99], 1

π lnn ≈ 0.221 log n [HNS01]

• What is this fundamental constant of quantum information?



Lower bounds: adversary method

• Main lower bound techniques: polynomial method and adversary method.

• Adversary method developed and improved in long series of works
[BBBV94, Amb00, HNS01, BSS03, Amb03, LM04, Zha04, SŠ06, HLŠ07]

• Adversary bound is an optimization problem which can be written as a
semidefinite program.

ADV(f) := max
Γ

‖Γ‖
maxi ‖Γ ◦Di‖

where Γ[x, y] = 0 if f(x) = f(y) and Di[x, y] = 1 if xi 6= yi and 0
otherwise.



The Γ matrix

f (0)-1

f (1)-1

f (0)-1

0

0

A

A*

f (1)-1

Notice that the spectral norm of Γ equals that of A.



The Γ ◦D1 matrix

f (0)-1

f (1)-1

f (0)-1

0

0

f (1)-1

0
0

0
0

B
C

C

B

*

*

0x

1x

1y

0y

0x 1x 0y 1y

The spectral norm of Γ ◦D1 equals max{‖B‖, ‖C‖}.
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Automorphism principle

• “Whenever you have to deal with a structure endowed entity Σ try to
determine its group of automorphisms . . . you can expect to gain a deep
insight into the constitution of Σ in this way.”

—Hermann Weyl, Symmetry

• Using symmetry of problem can greatly simplify search for optimal
adversary matrices [HLŠ07].

• Input to ordered search (for n = 4) S = {1111, 0111, 0011, 0001} Trivial
automorphism group!



Automorphism principle

• [FGGS99] extend inputs “to a circle”: S′ = {11110000, 01111000, 00111100,
00011110, 00001111, 10000111, 11000011, 11100001}

• Now have cyclic structure, and query complexity changes by at most 1.

• Using automorphism principle, can wlog reduce computation of adversary
bound to the matrix problem given at beginning of talk.



Automorphism principle

• [FGGS99] extend inputs “to a circle”: S′ = {11110000, 01111000, 00111100,
00011110, 00001111, 10000111, 11000011, 11100001}

• Now have cyclic structure, and query complexity changes by at most 1.

• Using automorphism principle, can wlog reduce computation of adversary
bound to the matrix problem given at beginning of talk.

• We show that the adversary method (even with negative weights) cannot
show lower bounds larger than 1

π lnn + O(1).
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A word about the proof (non-negative case)

• We exhibit solutions to both the primal and dual formulation of adversary
bound, and show that they match.

• A key role in both directions is played by the lovely sequence

βi =

(
2i
i

)
4i

.

• Key property:
∑j

i=0 βiβj−i = 1

• Proof:
1√

1− z
= β0 + β1z + β2z

2 + β3z
3 + . . .
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Optimal matrix

Recall we wish to show that α+(n) =
∑n−1

i=0

(
(2i

i )
4i

)2

.

Define An(j) =
∑n−j−1

i=0 βiβi+j.
A4(0)−A4(1) A4(1)−A4(2) A4(2)−A4(3) A4(3)
A4(1)−A4(2) A4(2)−A4(3) A4(3) 0
A4(2)−A4(3) A4(3) 0 0

A4(3) 0 0 0





Optimal matrix

Recall we wish to show that α+(n) =
∑n−1

i=0

(
(2i

i )
4i

)2

.

Define An(j) =
∑n−j−1

i=0 βiβi+j.
A4(0)−A4(1) A4(1)−A4(2) A4(2)−A4(3) A4(3)
A4(1)−A4(2) A4(2)−A4(3) A4(3) 0
A4(2)−A4(3) A4(3) 0 0

A4(3) 0 0 0


To bound spectral norm, show that x = [β3, β2, β1, β0] is eigenvector with
eigenvalue 1.
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Conclusion

• What is the quantum query complexity of ordered search?

• Progress will require new algorithms or new lower bound techniques.

• [BSS03] show quantum query complexity can be written as a semidefinite
program. Adversary bound can be viewed as a relaxation of this program.

• Our optimal matrix can be used to give nearly elementary proof of
Hilbert’s Inequality (need Γ(1/2) =

√
π).


