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A brief history of disjointness

Alice holds set S;, Bob S5. Do they share a common element?
Deterministic communication complexity n bits
co-Nondeterministic complexity is O(logn).

Randomized complexity ©(n) [KS87, Raz92]

Quantum complexity ©(y/n) [lower Raz03, upper AA03]



Number-on-the-forehead model

k-players, input x1,...,x;. Player ¢ knows everything but z;.

Large overlap in information makes showing lower bounds difficult. Only
available method is discrepancy method.

Lower bounds have application to powerful models such as depth three
circuits and complexity of proof systems.

Best lower bounds are of the form n/2%. Bound of n/22* for generalized
inner product function [BNS89].
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Disjointness in the number-on-the-forehead model

e Best lower bound Q(l;ﬁ?) and best upper bound O(kn/2%) [lower

BPSWO06, upper Gro94].

e Kushilevitz and Nisan: “The only technique from two-party complexity
that generalizes to multiparty complexity is the discrepancy method.”
For disjointness, discrepancy can only show bounds of O(logn).

o Researchers have studied restricted models—bound of n'/3 for three
players where first player speaks and dies [BPSWO06]. Bound of n'/* /k*
in one-way model [VWO07].
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e Chattopadhyay and Ada independently obtained similar results
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Application to proof systems

e As linear and semidefinite programming are some of the most
sophisticated algorithms we have developed, natural to see how they
fare on NP-complete problems.

e One way to formalize this is through proof complexity: for example
cutting planes, Lovasz-Schrijver proof systems.

e Beame, Pitassi, and Segerlind show that lower bounds on disjointness

imply lower bounds for a very general class of proof systems, including
the above [BPS06].



Semantically entailed proof systems

Say trying to show a CNF formula ¢ is not satisfiable

Refutation is a binary tree with nodes labeled by degree d polynomial
inequalities and derives 0 > 1.

Axioms are clauses of ¢

Derivation rule is Boolean soundness: if every 0/1 assignment which
satisfies f and g also satisfies h, then one may conclude h from f,g.



Example: (aVb)A(—aV —b)A(—aVb)A(aV —b)

a+b>\ 7b> 1a+b>\ 7b>1
a(1-a)+b(1- b a(1 a+b1 b
a(1-b) +b1 -a) ba+1 a
a(1 b)+b(1 -a) >=1 ab+(1 a)(1 -b) >= 1

1>=2



Application to proof systems

e Via [BPS06] and our results on disjointness, we obtain super-polynomial
lower bounds on the size of tree-like degree d semantically entailed proofs
needed to refute certain CNFs for any d = loglogn — O(logloglogn).

e Examples: cutting planes, Lovasz-Schrijver systems (d = 2).

e Exponential bounds known for cutting planes and tree-like Lovasz-

Schrijver systems, but rely heavily on specific properties of these proof
systems. Even for d = 2 no such bounds were known in general.



Review of two-party complexity

e Alice and Bob wish to compute a distributed function f : X xY —
{—1,+1}. Consider a | X|-by-|Y| matrix where Alx,y] = f(x,y).

e Structural theorem: successful c-bit protocol partitions A into 2°¢
monchromatic rectangles.

e |n particular, the protocol gives us a way to decompose A as
A= Z eiCi
i

where ¢; € {—1,1} and C; is a 0/1 valued rank-one matrix.



A relaxation

e Define a quantity

1(A) = min {Z ] : A= Zac}

where each C; is a 0/1 valued rank-one matrix.
e We have D(A) > log uu(A).

e The log rank bound is a relaxation in a different direction—each C; can
be an arbitrary rank one matrix, but we count their number rather than
their “weight”.



Randomized complexity

e For randomized complexity, a protocol gives a decomposition not of A
but of a matrix close to A in ¢, norm.

e To capture this, we consider an approximate version of u: for a > 1

« A — . A/
WA= s i car M)

where J is the all ones matrix.

e One can show that R.(A) > log u“(A) — log(a) for a = 1/(1 — 2e).



Dual formulation

e Now we have a lower bound technique, but it seems hard to use as is a
minimization problem.



Dual formulation

e Now we have a lower bound technique, but it seems hard to use as is a
minimization problem.

e We look at the dual formulation to get a maximization problem which is
more convenient for showing lower bounds.



Dual formulation

Now we have a lower bound technique, but it seems hard to use as is a
minimization problem.

We look at the dual formulation to get a maximization problem which is
more convenient for showing lower bounds.

By definition, the dual norm is

p(Q) = max [(Q,B)|

B:u(B)<1

So we see p*(Q) = maxc [{Q,C)| where C' is 0/1 valued rank one
matrix.



Dual formulation

e By theory of duality we then get

e This form is more convenient for showing lower bounds— it suffices to
exhibit a matrix ) that has non-negligible correlation with A and such

that p*(Q) is small.
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Comparison with discrepancy

Discrepancy with respect to probability distribution P is defined as

discp(A) = max(Ao P,C)

C
=p (Ao P).
Thus
r 1 B (A, Ao P)
disc(A) HIJELS%C (Ao P) PS5 u(Ao P)
Plli=1
A
= max 4, Q)

Q:A0Q>0 11*(Q)



Number-on-the-forehead model

e Instead of a communication matrix, we now have a communication tensor
Alxy, ...,z = f(x1, ..., k).

e Instead of combinatorial rectangles we now have cylinder intersections.

e Message of player ¢ does not depend on x;. Behavior can be described
as a function ¢ for which

d(x1, .. Ty p) = G(T1, ..o, Thy o oo, Tp).

e We call such a function a cylinder function.



Number-on-the-forehead model

e A cylinder intersection is the intersection of sets which are cylinders.
Characteristic function can be written as

O (x1, ... xp) - (2, .., x)
where each ¢° is a 0/1 valued cylinder function in the i** dimension.

e Structural theorem: a successful c-bit k-player NOF protocol decomposes
the communication tensor into 2° monochromatic k-fold cylinder
intersections.



Our lower bound technique

e Analogous to the two-player case, for a k-tensor A we define
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p(A) = min {Z o] 1 A = Zac}

i
where each C); is characteristic function of a k-fold cylinder intersection.

o Di(A) > log u(A)

e As before we define the approximate version to lower bound randomized
complexity:

« A — . A/
WA= s s M)
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Overview of proof

Task: choose Q). Show (A, Q) is non-negligible. Upper bound p*(Q).

We will follow the elegant “pattern matrix” framework of Sherstov
[She07a,She07b], and its extension to the tensor case by Chattopadhyay
[Cha07].

If A is formed from a function f of a single variable in a structured way,
we can relate u*(A) to the a-approximate degree of f.

Namely, a “witness” ¢ to the high approximate degree of f can be used
to construct Q with the right properties.



Pattern Matrix

Alice holds m-many strings © = (x1,...,x,,) each of length M.
Bob holds S = (a1, ...,a.), each a; € M, to select bits of x.

For a function f: {0,1}"™ — {—1, 41}, pattern matrix is defined as

Aslz, S| = f(zi|ai], ..., Tmlam]).

If f = OR then this is special case of disjointness on mM bits.



Pattern Tensors

For simplicity, £k = 3. Now Alice has m many M-by-M matrices
T = (1, -, Tm).

Bob, Charlie hold S1,.55 € [M]|™ to select rows resp. columns of x.
For a function f: {0,1}"™ — {—1,+1} define

Af[a:, Sl, SQ] = f(xl[Sl[l], Sg[l]], ce ,xm[Sl[m], Sg[m]]

Nice property: every m-bit string appears as input to f equal number of
times.



Embedding into disjointness of size m >

.. 010 ...

m many

S_1[1]

S_1[m]

S_2[1] S_2[m]



Building () from degree witness

e \We define approximate degree in a “sign” way
e deg,(f) = min, {deg(g) : 1 < g(2)f(x) < a}

e In this way, we can uniformly handle both the bounded-error case and
the sign or voting polynomial degree which corresponds to deg._(f).



Dual polynomial

e For a fixed degree d, finding the “best fit" degree d polynomial g can be
written as a linear program.

e If f has no a-approximation with degree d, the dual of this program will
be feasible, and its solution ¢ will give us a witness to the hardness of f.

o Welet () = A, be the pattern tensor formed from ¢, and this will witness
that u*(Ay) is large.



Dual polynomial

More precisely, if deg,(f) > d then there exists a polynomial ¢ such
that
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Dual polynomial

More precisely, if deg,(f) > d then there exists a polynomial ¢ such
that

L gl =1

<f’ >—oz-|—%

3. q is orthogonal to all polynomials of degree < d.

We let () be the pattern tensor formed from ¢g. Iltem 2 lower bounds
(Af, Q). Item 3 is used to upper bound p*(Q).



Let o < ap.

Main theorem

deg,.(f)

V

IOglua(Af) = 2k—1 —|—10g
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Main theorem

Let o < ap.

deg,.(f)

o o) — &
log u“(Ay) > S-1 + log

Oéo—l—l

provided M > e(k — 1)22" 'm.

We can embed the pattern tensor of OR into disjointness to obtain

n1/2k
R.{,4(DISJ,,) = Q
1/4( ) ((k . 1)2k—122k1)



Room for improvement

e We expect the right answer to be Q(n/2%).

1/2k

e Numerator: n comes from the reduction. Curse of dimensionality.

e Denominator: factor of 22° comes in upper bounding 1 (Q).



Conclusion

Norm approach to communication complexity holds quite generally.

Our inspiration to the 1 norm: 5 norm shown to lower bound quantum
communication complexity by Linial and Shraibman.

We can extend the 5 norm to tensors to show lower bounds on quantum
NOF complexity.

Turns out all techniques to bound p also work for ~s. In particular, we
can show bounds of size n /2" for explicit functions, n /22" for generalized

inner product, and n'/2¥/22" for disjointness.



