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Quantum query complexity

e Popular model for study

e Seems to capture power of quantum computing:

— Grover's search algorithm,
— Period finding of Shor's algorithm,
— Quantum walks: element distinctness, triangle finding, matrix

multiplication

e And we can also prove lower bounds!

— Polynomial method, Quantum Adversary method
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Adversary method

e Adversary method developed by Ambainis, 2002.

e Many competing formulations: weight schemes Amb03, Zha05, spectral
norm of matrices BSS03, and Kolmogorov complexity LMO04.

e All these methods shown equivalent by Spalek and Szegedy, 2006.



Reinventing the adversary

e \We introduce a new adversary method, ADV®E.

e ADVE(f) > ADV(f). We show a function where ADV(f) = O(m)
and ADV=(f) = Q(m!098).

e We essentially use that a successful algorithm computes a function, not
just that it can distinguish inputs with different function values.

e Our method does not face the limitations of previous adversary methods



Quantum queries

e In classical query complexity, want to compute f(z) and can make
queries of the form x; =7 Complexity is number of queries on worst case
input.

e Quantum query—turn query operator into unitary transformation on
Hilbert Space H;y ® Hg @ Hw

Olz)|i)|2) — (=1)%|z)]i)|2).

e Can make queries in superposition.



Query algorithm

e On input x, algorithm proceeds by alternating queries and arbitrary
unitary transformations independent of x

6L) = U,OU,_; ... U;0Up|2)[0)]0).

e Output determined by complete set of orthogonal projectors {Ily, I1;}.
A T-query algorithm outputs b on input x with probability [|TI;|¢2)]|%.

e (Q2(f) is number T of queries needed by best algorithm which outputs
f(x) on input x with probability at least 2/3, for all z.



Adversary method

Let f: {0,1}" — {0,1} be a Boolean function, and I' a Hermitian
2™-by-2" matrix where I'|z,y| = 0 if f(x) = f(y). Then

1T
ADV(f) = .
(/) 20 ma [T o Dy

D; is a zero-one matrix where D;|xz,y] = 1 if z; # y; and D;|z,y] = 0
otherwise.

Theorem [BSSO03]: Q2(f) = Q(ADV(f)).



The I' matrix

flo) (1)
f(0)| O A
f(1)y| A 0

Notice that the spectral norm of I' equals that of A.



Example: OR function

We define the matrix:

| 1000 0100 0010 0001
0000 | 1 1 1 1

The spectral norm of this matrix is V4, and the spectral norm of each
I'o D, is one.



Example: OR function

We define the matrix:

| 1000 0100 0010 0001
0000 | 1 1 1 1

The spectral norm of this matrix is V4, and the spectral norm of each
I'o D, is one.

Generalizing this construction we find Q2(OR,,) = Q(y/n).
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New adversary method

We remove the restriction to nonnegative matrices:

L
ADV*E(f) = | .
) = e T o D

Theorem: Qa(f) = QADVE(f)).

As we maximize over a larger set, ADV=(f) > ADV(f). It turns out
that negative entries can help in giving larger lower bounds!



Automorphism Principle

Let f:{0,1}" — {0,1}, and let ™ € S,, x Z2.



Automorphism Principle

Let f:{0,1}" — {0,1}, and let m# € S, x Z%. We say that 7 is an
automorphism of f if f(w(x)) = f(x) for all x € {0,1}".



Automorphism Principle

Let f:{0,1}" — {0,1}, and let m# € S, x Z%. We say that 7 is an
automorphism of f if f(w(x)) = f(x) for all x € {0,1}".

e Let GG be a group of automorphisms of f. There is an optimal adversary
matrix I with T'[z,y| = T'|n(x), w(y)] for all 7 € G.



Automorphism Principle

Let f:{0,1}" — {0,1}, and let m# € S, x Z%. We say that 7 is an
automorphism of f if f(w(x)) = f(x) for all x € {0,1}".

e Let GG be a group of automorphisms of f. There is an optimal adversary
matrix I with T'[z,y| = T'|n(x), w(y)] for all 7 € G.

o If for all x,y with f(x) = f(y), there exists m € G with y = 7(x), then
the uniform vector is a principal eigenvector of I'.



Composition principle

Let f:{0,1}" — {0,1}. Write f! = f and £¢: {0,1}"" — {0,1} be

fha) = FOfH W), 7 @), T ),

Then ADVE(f4) > ADV=(f)%
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Another example: Ambainis function

e Originally used by Ambainis to separate quantum query complexity from
polynomial degree.

e Automorphism group isomorphic to Zsg, generated by (4321) x (0,0,0, 1).

e T he zeros: 0000

0000 - (4321) x (0,0,0,1) = 0001
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e Originally used by Ambainis to separate quantum query complexity from
polynomial degree.

e Automorphism group isomorphic to Zsg, generated by (4321) x (0,0,0, 1).

e The zeros: 0000, 0001
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Another example: Ambainis function

e Originally used by Ambainis to separate quantum query complexity from
polynomial degree.

e Automorphism group isomorphic to Zsg, generated by (4321) x (0,0,0, 1).

e [he zeros: 0000, 0001, 0011, 0111
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Another example: Ambainis function

e Originally used by Ambainis to separate quantum query complexity from
polynomial degree.

e Automorphism group isomorphic to Zsg, generated by (4321) x (0,0,0, 1).
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Another example: Ambainis function

e Originally used by Ambainis to separate quantum query complexity from
polynomial degree.

e Automorphism group isomorphic to Zsg, generated by (4321) x (0,0,0, 1).

e [he zeros: 0000, 0001, 0011, 0111, 1111

1111 - (4321) x (0,0,0, 1)



Another example: Ambainis function

e Originally used by Ambainis to separate quantum query complexity from
polynomial degree.

e Automorphism group isomorphic to Zsg, generated by (4321) x (0,0,0, 1).

e [he zeros: 0000, 0001, 0011, 0111, 1111

1111 - (4321) x (0,0,0,1) = 1110



Another example: Ambainis function

e Originally used by Ambainis to separate quantum query complexity from
polynomial degree.

e Automorphism group isomorphic to Zsg, generated by (4321) x (0,0,0, 1).

e The zeros: 0000, 0001, 0011, 0111, 1111, 1110,
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e Originally used by Ambainis to separate quantum query complexity from
polynomial degree.

e Automorphism group isomorphic to Zsg, generated by (4321) x (0,0,0, 1).
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Another example: Ambainis function

Originally used by Ambainis to separate quantum query complexity from
polynomial degree.

Automorphism group isomorphic to Zg, generated by (4321) x (0,0, 0, 1).
The zeros: 0000, 0001, 0011, 0111, 1111, 1110, 1100, 1000.

The ones: 0010, 0101, 1011, 0110, 1101, 1010, 0100,



Another example: Ambainis function

Originally used by Ambainis to separate quantum query complexity from
polynomial degree.

Automorphism group isomorphic to Zg, generated by (4321) x (0,0, 0, 1).
The zeros: 0000, 0001, 0011, 0111, 1111, 1110, 1100, 1000.

The ones: 0010, 0101, 1011, 0110, 1101, 1010, 0100, 1001.
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Another example: Ambainis function

0010 | 0101 | 1011 | 0110 | 1101 | 1010 | 0100 | 1001
0000 a C d b d
0001 a C d b d
0011 a C d b d
0111 a C d b d
1111 d a C d b
1110 b d a C d
1100 d b d a C
1000 C d b d a




Another example: Ambainis function

0010 | 0101 | 1011 | O11 1101 | 1010 | 0100 | 1001

0000 a C d b d C

0001 a C d b d C

0011 a C d b d C
0111 C a C d b d
1111 d C a C d b
1110 b d C a C d
1100 d b d C a C
1000 C d b d C a




Another example: Ambainis function

0010 | 0101 | 1011 | 0110 | 1101 | 1010 | 0100 | 1001

0000 a C b d C a

0001 a d b d C a
0011 a C d b d C
0111 C a a C d b d
1111 d C a a C d b
1110 b d C a a C d
1100 d b d C a a C
1000 C d b d C a a




Another example: Ambainis function

0010 | 0101 | 1011 | 0110 | 1101 | 1010 | 0100 | 1001
0000 a C d b d C a b
0001 b a C d b d C a
0011 a b a C d b d C
0111 C a b a C d b d
1111 d C a b a C d b
1110 b d C a b a C d
1100 d b d C a b a C
1000 C d b d C a b a




The ' o D; matrix

1001 | 101 1011 101
0011 C b a d
0000 b C d d
0001 a d C b
0111 d d b C




Ambainis function continued

We try to maximize ||I'|| = 2(a 4+ b+ ¢+ d) while keeping spectral norm
of I'o D; at most 1.

a b C d 1T
ADV 0.75 0.50 0 0 25
ADV™ | 0.5788 | 0.7065 | 0.1834 | -0.2120 | 2.5136




Ambainis function continued

We try to maximize ||I'|| = 2(a 4+ b+ ¢+ d) while keeping spectral norm
of I'o D; at most 1.

a b C d 1T
ADV 0.75 0.50 0 0 2.5
ADV™ | 0.5788 | 0.7065 | 0.1834 | -0.2120 | 2.5136

The Ambainis function has polynomial degree 2. By iterating this function,
we obtain largest known separation between polynomial degree and quantum
query complexity, m vs m!327.
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Some words about the proof

Recall that running the algorithm on input x for t queries:
¢t) = U;OUs_1 ... U OUp|)|0)]0).

Write this as [¢!) = |x)|)L).

Let I' be an adversary matrix and ¢ a principal eigenvector. The
principal eigenvector tells us how to build a hard input— we feed algorithm
the superposition ) d,|x)|0)|0). State of algorithm after ¢ queries is
> 0alz) Wty Let pM [z, y] = 626, (YL|wl) be the reduced density matrix
of this state.
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Watch the density matrix. . .

Define a progress function based on p*) as

W = (T, p) = "Tla, y]650, (WL},
Y

Show three things:
o (W=

o (W] <2\/e(1-¢|T|

o W — WEFD| < 2max; ||T o Dy



Normally speaking

e singular values: 0;(A4) = /\;(A*A)

e trace norm: ||Alj¢ =), 0i(A)

e Frobenius norm: [|A[|7. =3, 04(A)* = >, |Afi, j]I°
e spectral norm and trace norm are dual:

(4, B)
1Bl

|A[[r = max
B



Step Two: negative adversary

Want to upper bound (T, p{™)) < 2,/€(1 — €)||T||.

Remember I'o F' =T, where F'lz,y| = 1 if f(x) # f(y) and Flz,y] =0
otherwise.

Thus (T, pM)) = (T o F, pM)) = (T, p") o F).

Trace norm and spectral norm are dual means: (A, B) < ||A| - || B||¢r-
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Bounding trace norm of p(7) o F

Cauchy-Schwarz on singular values: || X*Y ¢ < || X||r||Y || F

ldea: Factor p(T> o FFinto X*Y, one of which has small Frobenius norm.

Let X be matrix of correct answers: columns of X given be 6,111 ,)|12).
Let Y be matrix of wrong answers: columns of Y given by 0,111 _ (. |¥)).

Then pM) o F = X*Y + Y*X.
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How that works

o X'Y[x,y] = 050, (¥ Ty 1 gy |ty )

o V*X[z,y] = 056, (WL | ) Lpy [0 ])



How that works

o X'Y[x,y] = 050, (¥ Ty 1 gy |ty )

o V*X[z,y] = 058, (T I _ () Ty |07

P {gg’;&ywm; ) S

8



Bounding trace norm of p(7) o F

e We have plT) o F = X*Y +Y*X and so ||p(") o Fl; < 2| X||7||Y||F-

e Norm squared of column x of Y is
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Bounding trace norm of p(7) o F

We have pT) o F = X*Y + Y*X and so ||p") o F||; < 2| X||F||Y]F.

Norm squared of column x of Y is

|5w‘2<¢§|ﬂl—f(x)|¢§> < €|5w‘2-

Thus |[Y]|2 < e.

Further, as || X||% + ||Y]|% = 1, we have ||p! o F||s < 24/€(1 —¢)



Open Questions

e Element distinctness: Best bound provable by old method is v/2n, but
right answer is n2/3, provable by polynomial method. Can new adversary
method prove optimal bound?

e Triangle finding: Best bound provable by old method is n, and best
known algorithm gives n!-3. Can new adversary bound give a superlinear
lower bound?

e ADV™(f)? is a lower bound on the formula size of f. A challenge is to
break the formula size barrier, or show it is not a barrier at all.



