Negative weights make adversaries stronger

Troy Lee LRI, Université Paris-Sud

Joint work with: Peter Høyer and Robert Špalek

Quantum query complexity

- Popular model for study
- Seems to capture power of quantum computing:
 - Grover's search algorithm,
 - Period finding of Shor's algorithm,
 - Quantum walks: element distinctness, triangle finding, matrix multiplication
- And we can also prove lower bounds!
 - Polynomial method, Quantum Adversary method

• Adversary method developed by Ambainis, 2002.

- Adversary method developed by Ambainis, 2002.
- Many competing formulations: weight schemes Amb03, Zha05, spectral norm of matrices BSS03, and Kolmogorov complexity LM04.

- Adversary method developed by Ambainis, 2002.
- Many competing formulations: weight schemes Amb03, Zha05, spectral norm of matrices BSS03, and Kolmogorov complexity LM04.
- All these methods shown equivalent by Špalek and Szegedy, 2006.

Reinventing the adversary

- We introduce a new adversary method, ADV^{\pm} .
- $ADV^{\pm}(f) \ge ADV(f)$. We show a function where ADV(f) = O(m) and $ADV^{\pm}(f) = \Omega(m^{1.098})$.
- We essentially use that a successful algorithm *computes* a function, not just that it can *distinguish* inputs with different function values.
- Our method does not face the limitations of previous adversary methods

Quantum queries

- In classical query complexity, want to compute f(x) and can make queries of the form $x_i = ?$ Complexity is number of queries on worst case input.
- ullet Quantum query—turn query operator into unitary transformation on Hilbert Space $H_I \otimes H_Q \otimes H_W$

$$O|x\rangle|i\rangle|z\rangle \to (-1)^{x_i}|x\rangle|i\rangle|z\rangle.$$

• Can make queries in superposition.

Query algorithm

ullet On input x, algorithm proceeds by alternating queries and arbitrary unitary transformations independent of x

$$|\phi_x^t\rangle = U_t O U_{t-1} \dots U_1 O U_0 |x\rangle |0\rangle |0\rangle.$$

- Output determined by complete set of orthogonal projectors $\{\Pi_0, \Pi_1\}$. A T-query algorithm outputs b on input x with probability $\|\Pi_b|\phi_x^T\rangle\|^2$.
- $Q_2(f)$ is number T of queries needed by best algorithm which outputs f(x) on input x with probability at least 2/3, for all x.

Let $f:\{0,1\}^n \to \{0,1\}$ be a Boolean function, and Γ a Hermitian 2^n -by- 2^n matrix where $\Gamma[x,y]=0$ if f(x)=f(y). Then

$$ADV(f) = \max_{\substack{\Gamma \geq 0 \\ \Gamma \neq 0}} \frac{\|\Gamma\|}{\max_i \|\Gamma \circ D_i\|}.$$

 D_i is a zero-one matrix where $D_i[x,y]=1$ if $x_i\neq y_i$ and $D_i[x,y]=0$ otherwise.

Theorem [BSS03]: $Q_2(f) = \Omega(ADV(f))$.

The Γ matrix

Notice that the spectral norm of Γ equals that of A.

Example: OR function

We define the matrix:

The spectral norm of this matrix is $\sqrt{4}$, and the spectral norm of each $\Gamma \circ D_i$ is one.

Example: OR function

We define the matrix:

The spectral norm of this matrix is $\sqrt{4}$, and the spectral norm of each $\Gamma \circ D_i$ is one.

Generalizing this construction we find $Q_2(OR_n) = \Omega(\sqrt{n})$.

New adversary method

We remove the restriction to nonnegative matrices:

$$\mathbf{ADV}^{\pm}(f) = \max_{\Gamma \neq 0} \frac{\|\Gamma\|}{\max_i \|\Gamma \circ D_i\|}.$$

Theorem: $Q_2(f) = \Omega(ADV^{\pm}(f)).$

New adversary method

We remove the restriction to nonnegative matrices:

$$\mathbf{ADV}^{\pm}(f) = \max_{\Gamma \neq 0} \frac{\|\Gamma\|}{\max_i \|\Gamma \circ D_i\|}.$$

Theorem: $Q_2(f) = \Omega(ADV^{\pm}(f)).$

As we maximize over a larger set, $ADV^{\pm}(f) \geq ADV(f)$. It turns out that negative entries can help in giving larger lower bounds!

Let $f: \{0,1\}^n \to \{0,1\}$, and let $\pi \in S_n \times \mathbb{Z}_2^n$.

Let $f:\{0,1\}^n \to \{0,1\}$, and let $\pi \in S_n \times \mathbb{Z}_2^n$. We say that π is an automorphism of f if $f(\pi(x)) = f(x)$ for all $x \in \{0,1\}^n$.

Let $f: \{0,1\}^n \to \{0,1\}$, and let $\pi \in S_n \times \mathbb{Z}_2^n$. We say that π is an automorphism of f if $f(\pi(x)) = f(x)$ for all $x \in \{0,1\}^n$.

• Let G be a group of automorphisms of f. There is an optimal adversary matrix Γ with $\Gamma[x,y] = \Gamma[\pi(x),\pi(y)]$ for all $\pi \in G$.

Let $f: \{0,1\}^n \to \{0,1\}$, and let $\pi \in S_n \times \mathbb{Z}_2^n$. We say that π is an automorphism of f if $f(\pi(x)) = f(x)$ for all $x \in \{0,1\}^n$.

- Let G be a group of automorphisms of f. There is an optimal adversary matrix Γ with $\Gamma[x,y] = \Gamma[\pi(x),\pi(y)]$ for all $\pi \in G$.
- If for all x, y with f(x) = f(y), there exists $\pi \in G$ with $y = \pi(x)$, then the uniform vector is a principal eigenvector of Γ .

Composition principle

Let $f:\{0,1\}^n \to \{0,1\}$. Write $f^1=f$ and $f^d:\{0,1\}^{n^d} \to \{0,1\}$ be $f^d(x)=f(f^{d-1}(x^{(1)}),f^{d-1}(x^{(2)}),\dots,f^{d-1}(x^{(n)})).$

Then $ADV^{\pm}(f^d) \ge ADV^{\pm}(f)^d$.

- Originally used by Ambainis to separate quantum query complexity from polynomial degree.
- Automorphism group isomorphic to \mathbb{Z}_8 , generated by $(4321) \times (0,0,0,1)$.
- The zeros: 0000

- Originally used by Ambainis to separate quantum query complexity from polynomial degree.
- Automorphism group isomorphic to \mathbb{Z}_8 , generated by $(4321) \times (0,0,0,1)$.
- The zeros: 0000

$$0000 \cdot (4321) \times (0, 0, 0, 1)$$

- Originally used by Ambainis to separate quantum query complexity from polynomial degree.
- Automorphism group isomorphic to \mathbb{Z}_8 , generated by $(4321) \times (0,0,0,1)$.
- The zeros: 0000

$$0000 \cdot (4321) \times (0, 0, 0, 1) = 0001$$

- Originally used by Ambainis to separate quantum query complexity from polynomial degree.
- Automorphism group isomorphic to \mathbb{Z}_8 , generated by $(4321) \times (0,0,0,1)$.
- The zeros: 0000, 0001

- Originally used by Ambainis to separate quantum query complexity from polynomial degree.
- Automorphism group isomorphic to \mathbb{Z}_8 , generated by $(4321) \times (0,0,0,1)$.
- The zeros: 0000, 0001

$$0001 \cdot (4321) \times (0,0,0,1)$$

- Originally used by Ambainis to separate quantum query complexity from polynomial degree.
- Automorphism group isomorphic to \mathbb{Z}_8 , generated by $(4321) \times (0,0,0,1)$.
- The zeros: 0000, 0001

$$0001 \cdot (4321) \times (0, 0, 0, 1) = 0011$$

- Originally used by Ambainis to separate quantum query complexity from polynomial degree.
- Automorphism group isomorphic to \mathbb{Z}_8 , generated by $(4321) \times (0,0,0,1)$.
- The zeros: 0000, 0001, 0011

- Originally used by Ambainis to separate quantum query complexity from polynomial degree.
- Automorphism group isomorphic to \mathbb{Z}_8 , generated by $(4321) \times (0,0,0,1)$.
- The zeros: 0000, 0001, 0011

$$0011 \cdot (4321) \times (0,0,0,1)$$

- Originally used by Ambainis to separate quantum query complexity from polynomial degree.
- Automorphism group isomorphic to \mathbb{Z}_8 , generated by $(4321) \times (0,0,0,1)$.
- The zeros: 0000, 0001, 0011

$$0011 \cdot (4321) \times (0, 0, 0, 1) = 0111$$

- Originally used by Ambainis to separate quantum query complexity from polynomial degree.
- Automorphism group isomorphic to \mathbb{Z}_8 , generated by $(4321) \times (0,0,0,1)$.
- The zeros: 0000, 0001, 0011, 0111

- Originally used by Ambainis to separate quantum query complexity from polynomial degree.
- Automorphism group isomorphic to \mathbb{Z}_8 , generated by $(4321) \times (0,0,0,1)$.
- The zeros: 0000, 0001, 0011, 0111

$$0111 \cdot (4321) \times (0,0,0,1)$$

- Originally used by Ambainis to separate quantum query complexity from polynomial degree.
- Automorphism group isomorphic to \mathbb{Z}_8 , generated by $(4321) \times (0,0,0,1)$.
- The zeros: 0000, 0001, 0011, 0111

$$0111 \cdot (4321) \times (0, 0, 0, 1) = 1111$$

- Originally used by Ambainis to separate quantum query complexity from polynomial degree.
- Automorphism group isomorphic to \mathbb{Z}_8 , generated by $(4321) \times (0,0,0,1)$.
- The zeros: 0000, 0001, 0011, 0111, 1111

- Originally used by Ambainis to separate quantum query complexity from polynomial degree.
- Automorphism group isomorphic to \mathbb{Z}_8 , generated by $(4321) \times (0,0,0,1)$.
- The zeros: 0000, 0001, 0011, 0111, 1111

$$1111 \cdot (4321) \times (0,0,0,1)$$

- Originally used by Ambainis to separate quantum query complexity from polynomial degree.
- Automorphism group isomorphic to \mathbb{Z}_8 , generated by $(4321) \times (0,0,0,1)$.
- The zeros: 0000, 0001, 0011, 0111, 1111

$$1111 \cdot (4321) \times (0, 0, 0, 1) = 1110$$

- Originally used by Ambainis to separate quantum query complexity from polynomial degree.
- Automorphism group isomorphic to \mathbb{Z}_8 , generated by $(4321) \times (0,0,0,1)$.
- The zeros: 0000, 0001, 0011, 0111, 1111, 1110,

- Originally used by Ambainis to separate quantum query complexity from polynomial degree.
- Automorphism group isomorphic to \mathbb{Z}_8 , generated by $(4321) \times (0,0,0,1)$.
- The zeros: 0000, 0001, 0011, 0111, 1111, 1110, 1100,

- Originally used by Ambainis to separate quantum query complexity from polynomial degree.
- Automorphism group isomorphic to \mathbb{Z}_8 , generated by $(4321) \times (0,0,0,1)$.
- The zeros: 0000, 0001, 0011, 0111, 1111, 1110, 1100, 1000.

- Originally used by Ambainis to separate quantum query complexity from polynomial degree.
- Automorphism group isomorphic to \mathbb{Z}_8 , generated by $(4321) \times (0,0,0,1)$.
- The zeros: 0000, 0001, 0011, 0111, 1111, 1110, 1100, 1000.
- The ones: 0010,

- Originally used by Ambainis to separate quantum query complexity from polynomial degree.
- Automorphism group isomorphic to \mathbb{Z}_8 , generated by $(4321) \times (0,0,0,1)$.
- The zeros: 0000, 0001, 0011, 0111, 1111, 1110, 1100, 1000.
- The ones: 0010, 0101,

- Originally used by Ambainis to separate quantum query complexity from polynomial degree.
- Automorphism group isomorphic to \mathbb{Z}_8 , generated by $(4321) \times (0,0,0,1)$.
- The zeros: 0000, 0001, 0011, 0111, 1111, 1110, 1100, 1000.
- The ones: 0010, 0101, 1011,

- Originally used by Ambainis to separate quantum query complexity from polynomial degree.
- Automorphism group isomorphic to \mathbb{Z}_8 , generated by $(4321) \times (0,0,0,1)$.
- The zeros: 0000, 0001, 0011, 0111, 1111, 1110, 1100, 1000.
- The ones: 0010, 0101, 1011, 0110,

- Originally used by Ambainis to separate quantum query complexity from polynomial degree.
- Automorphism group isomorphic to \mathbb{Z}_8 , generated by $(4321) \times (0,0,0,1)$.
- The zeros: 0000, 0001, 0011, 0111, 1111, 1110, 1100, 1000.
- The ones: 0010, 0101, 1011, 0110, 1101,

- Originally used by Ambainis to separate quantum query complexity from polynomial degree.
- Automorphism group isomorphic to \mathbb{Z}_8 , generated by $(4321) \times (0,0,0,1)$.
- The zeros: 0000, 0001, 0011, 0111, 1111, 1110, 1100, 1000.
- The ones: 0010, 0101, 1011, 0110, 1101, 1010,

- Originally used by Ambainis to separate quantum query complexity from polynomial degree.
- Automorphism group isomorphic to \mathbb{Z}_8 , generated by $(4321) \times (0,0,0,1)$.
- The zeros: 0000, 0001, 0011, 0111, 1111, 1110, 1100, 1000.
- The ones: 0010, 0101, 1011, 0110, 1101, 1010, 0100,

- Originally used by Ambainis to separate quantum query complexity from polynomial degree.
- Automorphism group isomorphic to \mathbb{Z}_8 , generated by $(4321) \times (0,0,0,1)$.
- The zeros: 0000, 0001, 0011, 0111, 1111, 1110, 1100, 1000.
- The ones: 0010, 0101, 1011, 0110, 1101, 1010, 0100, 1001.

	0010	0101	1011	0110	1101	1010	0100	1001
0000								
0001								
0011								
0111								
1111								
1110								
1100								
1000								

	0010	0101	1011	0110	1101	1010	0100	1001
0000	а							
0001								
0011								
0111								
1111								
1110								
1100								
1000								

	0010	0101	1011	0110	1101	1010	0100	1001
0000	а							
0001		а						
0011			а					
0111				а				
1111					а			
1110						а		
1100							а	
1000								а

	0010	0101	1011	0110	1101	1010	0100	1001
0000	а	С						
0001		а						
0011			а					
0111				а				
1111					а			
1110						а		
1100							а	
1000								а

	0010	0101	1011	0110	1101	1010	0100	1001
0000	а	С						
0001		а	С					
0011			а	С				
0111				а	С			
1111					а	С		
1110						а	С	
1100							а	С
1000	С							а

	0010	0101	1011	0110	1101	1010	0100	1001
0000	а	С	d					
0001		а	С	d				
0011			а	С	d			
0111				а	С	d		
1111					а	С	d	
1110						а	С	d
1100	d						а	С
1000	С	d						а

	0010	0101	1011	0110	1101	1010	0100	1001
0000	а	С	d	b				
0001		а	С	d	b			
0011			а	С	d	b		
0111				а	С	d	b	
1111					а	С	d	b
1110	b					а	С	d
1100	d	b					а	С
1000	С	d	b					а

	0010	0101	1011	0110	1101	1010	0100	1001
0000	а	С	d	b	d			
0001		а	С	d	b	d		
0011			а	С	d	b	d	
0111				а	С	d	b	d
1111	d				а	С	d	b
1110	b	d				а	С	d
1100	d	b	d				а	С
1000	С	d	b	d				а

	0010	0101	1011	0110	1101	1010	0100	1001
0000	а	С	d	b	d	С		
0001		а	С	d	b	d	С	
0011			а	С	d	b	d	С
0111	С			а	С	d	b	d
1111	d	С			а	С	d	b
1110	b	d	С			а	С	d
1100	d	b	d	С			а	С
1000	С	d	b	d	С			а

	0010	0101	1011	0110	1101	1010	0100	1001
0000	а	С	d	b	d	С	а	
0001		а	С	d	b	d	С	а
0011	а		а	С	d	b	d	С
0111	С	а		а	С	d	b	d
1111	d	С	а		а	С	d	b
1110	b	d	С	а		а	С	d
1100	d	b	d	С	а		а	С
1000	С	d	b	d	С	а		а

	0010	0101	1011	0110	1101	1010	0100	1001
0000	а	С	d	b	d	С	а	b
0001	b	а	С	d	b	d	С	а
0011	а	b	а	С	d	b	d	С
0111	С	а	р	а	С	d	b	d
1111	d	С	а	b	а	С	d	b
1110	b	d	С	а	b	а	С	d
1100	d	b	d	С	а	b	а	С
1000	С	d	b	d	С	а	b	а

The $\Gamma \circ D_1$ matrix

	1001	1010	1011	1101
0011	С	b	а	d
0000	b	С	d	d
0001	а	d	С	b
0111	d	d	b	С

Ambainis function continued

We try to maximize $\|\Gamma\|=2(a+b+c+d)$ while keeping spectral norm of $\Gamma\circ D_i$ at most 1.

	а	b	С	d	$\ \Gamma\ $
$\overline{\text{ADV}}$	0.75	0.50	0	0	2.5
ADV^{\pm}	0.5788	0.7065	0.1834	-0.2120	2.5136

Ambainis function continued

We try to maximize $||\Gamma|| = 2(a+b+c+d)$ while keeping spectral norm of $\Gamma \circ D_i$ at most 1.

	a	b	С	d	$\ \Gamma\ $
	0.75			0	2.5
ADV^{\pm}	0.5788	0.7065	0.1834	-0.2120	2.5136

The Ambainis function has polynomial degree 2. By iterating this function, we obtain largest known separation between polynomial degree and quantum query complexity, m vs $m^{1.327}$.

Recall that running the algorithm on input x for t queries:

$$|\phi_x^t\rangle = U_t O U_{t-1} \dots U_1 O U_0 |x\rangle |0\rangle |0\rangle.$$

Write this as $|\phi_x^t\rangle = |x\rangle |\psi_x^t\rangle$.

Let Γ be an adversary matrix and δ a principal eigenvector.

Recall that running the algorithm on input x for t queries:

$$|\phi_x^t\rangle = U_t O U_{t-1} \dots U_1 O U_0 |x\rangle |0\rangle |0\rangle.$$

Write this as $|\phi_x^t\rangle = |x\rangle |\psi_x^t\rangle$.

Let Γ be an adversary matrix and δ a principal eigenvector. The principal eigenvector *tells us* how to build a hard input— we feed algorithm the superposition $\sum_x \delta_x |x\rangle |0\rangle |0\rangle$.

Recall that running the algorithm on input x for t queries:

$$|\phi_x^t\rangle = U_t O U_{t-1} \dots U_1 O U_0 |x\rangle |0\rangle |0\rangle.$$

Write this as $|\phi_x^t\rangle = |x\rangle |\psi_x^t\rangle$.

Let Γ be an adversary matrix and δ a principal eigenvector. The principal eigenvector *tells us* how to build a hard input— we feed algorithm the superposition $\sum_x \delta_x |x\rangle |0\rangle |0\rangle$. State of algorithm after t queries is $\sum_x \delta_x |x\rangle |\psi_x^t\rangle$.

Recall that running the algorithm on input x for t queries:

$$|\phi_x^t\rangle = U_t O U_{t-1} \dots U_1 O U_0 |x\rangle |0\rangle |0\rangle.$$

Write this as $|\phi_x^t\rangle = |x\rangle |\psi_x^t\rangle$.

Let Γ be an adversary matrix and δ a principal eigenvector. The principal eigenvector tells us how to build a hard input— we feed algorithm the superposition $\sum_x \delta_x |x\rangle |0\rangle |0\rangle$. State of algorithm after t queries is $\sum_x \delta_x |x\rangle |\psi_x^t\rangle$. Let $\rho^{(t)}[x,y] = \delta_x^* \delta_y \langle \psi_x^t | \psi_y^t\rangle$ be the reduced density matrix of this state.

Define a progress function based on $\rho^{(t)}$ as

$$W^{(t)} = \langle \Gamma, \rho^{(t)} \rangle = \sum_{x,y} \Gamma[x, y] \delta_x^* \delta_y \langle \psi_x^t | \psi_y^t \rangle.$$

Define a progress function based on $\rho^{(t)}$ as

$$W^{(t)} = \langle \Gamma, \rho^{(t)} \rangle = \sum_{x,y} \Gamma[x, y] \delta_x^* \delta_y \langle \psi_x^t | \psi_y^t \rangle.$$

Show three things:

$$\bullet |W^{(0)}| = ||\Gamma||$$

Define a progress function based on $\rho^{(t)}$ as

$$W^{(t)} = \langle \Gamma, \rho^{(t)} \rangle = \sum_{x,y} \Gamma[x, y] \delta_x^* \delta_y \langle \psi_x^t | \psi_y^t \rangle.$$

Show three things:

•
$$|W^{(0)}| = ||\Gamma||$$

•
$$|W^{(T)}| \le 2\sqrt{\epsilon(1-\epsilon)} \|\Gamma\|$$

Define a progress function based on $\rho^{(t)}$ as

$$W^{(t)} = \langle \Gamma, \rho^{(t)} \rangle = \sum_{x,y} \Gamma[x, y] \delta_x^* \delta_y \langle \psi_x^t | \psi_y^t \rangle.$$

Show three things:

- $|W^{(0)}| = ||\Gamma||$
- $|W^{(T)}| \le 2\sqrt{\epsilon(1-\epsilon)} \|\Gamma\|$
- $|W^{(t)} W^{(t+1)}| \le 2 \max_i ||\Gamma \circ D_i||$

Normally speaking

- singular values: $\sigma_i(A) = \sqrt{\lambda_i(A^*A)}$
- trace norm: $||A||_{tr} = \sum_i \sigma_i(A)$
- Frobenius norm: $||A||_F^2 = \sum_i \sigma_i(A)^2 = \sum_{ij} |A[i,j]|^2$
- spectral norm and trace norm are dual:

$$||A||_{tr} = \max_{B} \frac{\langle A, B \rangle}{||B||}.$$

Step Two: negative adversary

- Want to upper bound $\langle \Gamma, \rho^{(T)} \rangle \leq 2 \sqrt{\epsilon (1-\epsilon)} \| \Gamma \|.$
- Remember $\Gamma \circ F = \Gamma$, where F[x,y] = 1 if $f(x) \neq f(y)$ and F[x,y] = 0 otherwise.
- Thus $\langle \Gamma, \rho^{(T)} \rangle = \langle \Gamma \circ F, \rho^{(T)} \rangle = \langle \Gamma, \rho^{(T)} \circ F \rangle$.
- Trace norm and spectral norm are dual means: $\langle A, B \rangle \leq \|A\| \cdot \|B\|_{tr}$.

- Cauchy-Schwarz on singular values: $||X^*Y||_{tr} \le ||X||_F ||Y||_F$
- Idea: Factor $\rho^{(T)} \circ F$ into X^*Y , one of which has small Frobenius norm.

- Cauchy-Schwarz on singular values: $||X^*Y||_{tr} \le ||X||_F ||Y||_F$
- Idea: Factor $\rho^{(T)} \circ F$ into X^*Y , one of which has small Frobenius norm.
- Let X be matrix of correct answers: columns of X given be $\delta_x \Pi_{f(x)} | \psi_x^T \rangle$. Let Y be matrix of wrong answers: columns of Y given by $\delta_x \Pi_{1-f(x)} | \psi_x^T \rangle$.

- Cauchy-Schwarz on singular values: $||X^*Y||_{tr} \le ||X||_F ||Y||_F$
- Idea: Factor $\rho^{(T)} \circ F$ into X^*Y , one of which has small Frobenius norm.
- Let X be matrix of correct answers: columns of X given be $\delta_x \Pi_{f(x)} | \psi_x^T \rangle$. Let Y be matrix of wrong answers: columns of Y given by $\delta_x \Pi_{1-f(x)} | \psi_x^T \rangle$.
- Then $\rho^{(T)} \circ F = X^*Y + Y^*X$.

How that works

•
$$X^*Y[x,y] = \delta_x^* \delta_y \langle \psi_x^T | \Pi_{f(x)} \Pi_{1-f(y)} | \psi_y^T \rangle$$

How that works

•
$$X^*Y[x,y] = \delta_x^* \delta_y \langle \psi_x^T | \Pi_{f(x)} \Pi_{1-f(y)} | \psi_y^T \rangle$$

•
$$Y^*X[x,y] = \delta_x^*\delta_y \langle \psi_x^T | \Pi_{1-f(x)} \Pi_{f(y)} | \psi_y^T \rangle$$

How that works

•
$$X^*Y[x,y] = \delta_x^* \delta_y \langle \psi_x^T | \Pi_{f(x)} \Pi_{1-f(y)} | \psi_y^T \rangle$$

•
$$Y^*X[x,y] = \delta_x^*\delta_y \langle \psi_x^T | \Pi_{1-f(x)} \Pi_{f(y)} | \psi_y^T \rangle$$

$$X^*Y + Y^*X = \begin{cases} \delta_x^* \delta_y \langle \psi_x^T | \psi_y^T \rangle & f(x) \neq f(y) \\ 0 & f(x) = f(y) \end{cases}$$

- We have $\rho^{(T)} \circ F = X^*Y + Y^*X$ and so $\|\rho^{(T)} \circ F\|_{tr} \le 2\|X\|_F\|Y\|_F$.
- ullet Norm squared of column x of Y is

$$|\delta_x|^2 \langle \psi_x^T | \Pi_{1-f(x)} | \psi_x^T \rangle \le \epsilon |\delta_x|^2.$$

- We have $\rho^{(T)} \circ F = X^*Y + Y^*X$ and so $\|\rho^{(T)} \circ F\|_{tr} \le 2\|X\|_F \|Y\|_F$.
- ullet Norm squared of column x of Y is

$$|\delta_x|^2 \langle \psi_x^T | \Pi_{1-f(x)} | \psi_x^T \rangle \le \epsilon |\delta_x|^2.$$

- Thus $||Y||_F^2 \le \epsilon$.
- Further, as $\|X\|_F^2 + \|Y\|_F^2 = 1$, we have $\|\rho^T \circ F\|_{tr} \leq 2\sqrt{\epsilon(1-\epsilon)}$

Open Questions

- ullet Element distinctness: Best bound provable by old method is $\sqrt{2n}$, but right answer is $n^{2/3}$, provable by polynomial method. Can new adversary method prove optimal bound?
- Triangle finding: Best bound provable by old method is n, and best known algorithm gives $n^{1.3}$. Can new adversary bound give a superlinear lower bound?
- $ADV^{\pm}(f)^2$ is a lower bound on the formula size of f. A challenge is to break the formula size barrier, or show it is not a barrier at all.