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A brief history of disjointness

Alice holds set S;, Bob S5. Do they share a common element?
Deterministic communication complexity n bits
Randomized complexity ©(n) [KS87, Raz92]

Quantum complexity ©(y/n) [lower Raz03, upper AA03]



Number-on-the-forehead model

k-players, input x1,...,x;. Player ¢ knows everything but z;.

Large overlap in information makes showing lower bounds difficult. Only
available method is discrepancy method.

Lower bounds have application to powerful models such as depth three
circuits, complexity of proof systems.

Best lower bounds are of the form n/2%. Bound of n/22* for generalized
inner product function [BNS89].



Disjointness in the number-on-the-forehead model

e Best lower bound Q(l;;%?f) and best upper bound is O(kn/2%) [lower

BPSWO06, upper Gro94].

e All existing lower bounds in number-on-the-forehead model use
discrepancy method. For disjointness, discrepancy can only show bounds

of O(logn).

e Researchers have studied restricted models—bound of n'/3 for three
players where first player speaks and dies [BPSWO06]. Bound of n'/* /k*
in one-way model [VWOQ7].



Our results

e \We show disjointness requires randomized communication

Q( n1/2k >
(k — 1)2k—122¢"

in the general k-party number-on-the-forehead model.




Our results

e \We show disjointness requires randomized communication

nl/2k
Q
((k — 1)2k—122“>

in the general k-party number-on-the-forehead model.

e Chattopadhyay and Ada independently obtained similar results
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Application to proof systems

As linear and semidefinite programming are some of the most
sophisticated algorithms we have developed, natural to see how they
fare on NP-complete problems.

One way to formalize this is through proof complexity: for example
cutting planes, Lovasz-Schrijver proof systems.

Beame, Pitassi, and Segerlind show that lower bounds on disjointness
imply lower bounds for a very general class of proof systems [BPS06].

Semantically entailed proof systems: terms are degree d polynomial
inequalities. Derivation rule is Boolean soundness.



Example: (aVb)A(—aV —b)A(—aVb)A(aV —b)

a+b>\ 7b> 1a+b>\ 7b>1
a(1-a)+b(1- b a(1 a+b1 b
a(1-b) +b1 -a) ba+1 a
a(1 b)+b(1 -a) >=1 ab+(1 a)(1 -b) >= 1

1>=2



Application to proof systems

e Via [BPS06] and our results on disjointness, we obtain super-polynomial
lower bounds on the size of tree-like degree d semantically entailed proofs
needed to refute certain CNFs for any d = loglogn — O(logloglogn).

e Examples: cutting planes, Lovasz-Schrijver systems (d = 2), degree d
positivstellensatz.

e Exponential bounds were already known for cutting planes and Lovasz-
Schrijver systems, but relied heavily on the particular geometry of these
proof systems. Even for d = 2 no such bounds were known in general.



Review of two-party complexity

e Alice and Bob wish to compute a distributed function f : X xY —
{—1,+1}. Consider a | X|-by-|Y| matrix where M|z, y| = f(z,y).

e A successful protocol partitions M into monchromatic rectangles. This
leads to the famous log rank bound.

e More explicitly, the protocol gives us a way to decompose M as
M = Z e@-Cz-

where ¢; € {—1,1} and C; characteristic function of a combinatorial
rectangle.
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A relaxation

e Define a quantity

(M) = min {Z ;| M = ZaiGL}

where each C; is a combinatorial rectangle.
e Then we have D(M) > log u(M).

e The log rank bound is a relaxation in a different direction—each C; can
be an arbitrary rank one matrix, but we count their number rather than
their “weight”



Number-on-the-forehead model

e Instead of a communication matrix, we now have a communication tensor
Mz, ...,z = f(x1,...,%k).

e Instead of combinatorial rectangles we now have cylinder intersections.

e Message of player ¢ does not depend on x;. Behavior can be described
as a function ¢ for which

d(x1, .. Ty p) = G(T1, ..o, Thy o oo, Tp).

e We call such a function a cylinder function.



Number-on-the-forehead model

e A cylinder intersection is the intersection of sets which are cylinders.
Characteristic function can be written as

gbl(:cl,...,xk)---gbk(:vl,...,xk)

where each ¢’ is a 0/1 valued function which is a cylinder in the i'"
dimension.

e As a two-player protocol decomposes communication matrix
into monochromatic rectangles, number-on-the-forehead decomposes
communication tensor into monochromatic cylinder intersections.
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Our lower bound technique

e Analogous to the two-player case, for a k-tensor M we define

(M) = min {Z ;| - M = ZaiC’i}

where each C; is characteristic function of a cylinder intersection.
o Dy(M) > log (M)

e Now we have a lower bound technique, but how do we use it?



Dual norm

e In order to show lower bounds on u it is helpful to look at its dual norm
® By definition, /L*(Q) — maxp:,(B)<1 |<Q,B>‘

e So we see

i (@Q) = max|(Q, C)

where C' is the characteristic function of a cylinder intersection.



Dual formulation

e By theory of duality we then get

e This form is more convenient for showing lower bounds— it suffices to
exhibit a tensor () that has non-negligible correlation with M and such

that p*(Q) is small.



Randomized Models

The method can be easily modified for randomized models. Instead of
M, the important thing is then tensors which are close to M.

Define u®(M) = min’y, {u(M'): 1 < Mo M' < a}.
Motivates the definition p*° (M) = minyy {pu(M’) : 1 < M o M’}

R.(M) > log u*<(M) — log e, where ae = 1/(1 — 2¢).
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Comparison with discrepancy

For a sign tensor M discrepancy is defined as

discp(M) = mélX(M o P,C')

= u (M o P).



Comparison with discrepancy

For a sign tensor M discrepancy is defined as

discp(M) = max(M o P,C')

C
=p" (Mo P).
Thus
1 1
= Ina
disc(M) ~ P>0 p* (Mo P)

[P][[1=1



Comparison with discrepancy

For a sign tensor M discrepancy is defined as

discp(M) = mgx{M o P,C')

= u (M o P).

Thus
1 1 (M, M o P)

disc(M) || %Jli%( (Mo P)  Peo p* (Mo P)
Pl[[;=1



Comparison with discrepancy

For a sign tensor M discrepancy is defined as

discp(M) = max(M o P,C')

C
= (Mo P).
Thus
1 1 (M, M o P)
= 1ma = Inax
disc(M) ~ pmzi’f w(MoP) P20 u*(Mo P)
Pl[[1=1
_ (M, Q)
= max

Q:Mo>0 p*(Q)
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Overview of proof

e Tasks: choose (). Show (M, Q) is non-negligible. Upper bound p*(Q).

e We will follow the elegant “pattern matrix’ framework of Sherstov
[She07a,She07b].

o If M is “derived” from a function f in a structured way, we can relate
p (M) to the approximate degree of f.

e Namely, we can use a “witness” ¢ to the high degree of f to construct
(2 with the right properties.



Pattern Tensors

Chattopadhyay extends Sherstov's pattern matrices to the multiparty
case [Cha07]. We adapt this definition to accommodate disjointness.

e For simplicity, k =3. Let M > m and f:{0,1}"" — {-1,1}
e First player holds x: vector of m many M-by-M matrices
e Second, third players hold S1, S5 C [M|™ which will index bits of z

o Define F'(z, 51,52) = f(x1[Si[1], S2[1]], . .., zm[S1[m], S2[m]])



Pattern Tensors

e Every m bit string appears an equal number of times as argument to f.

e When f is the OR function, we can embed F' into the disjointness
function.



Pattern Tensors

Every m bit string appears an equal number of times as argument to f.

When f is the OR function, we can embed F' into the disjointness
function.

Think of inputs x,vy,z to disjointness as being vectors of m many
M-by-M matrices

x stays the same. Define y;|r,c] = 1 iff S1]i] = r. Similarly, z;[r,c] =1
iff Sa[i] = c.



Picture of the embedding
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Building () from degree witness

e \We define approximate degree in a “sign” way
e deg,(f) = min, {deg(g) : 1 < g(2)f(x) < a}

e In this way, we can uniformly handle both the bounded-error case and
the sign or voting polynomial degree which corresponds to deg._(f).



Dual polynomial

e For a fixed degree d, finding the “best fit" degree d polynomial g can be
written as a linear program.

e If f has no degree-d a-approximation, the dual of this program will be
feasible, and its solution ¢ will give us a witness to the hardness of f.

e \We will use this witness vector ¢ to construct our tensor () to witness
that u® is large.



Dual polynomial

More precisely, if deg,(f) = d then there exists a polynomial ¢ such
that
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Dual polynomial

More precisely, if deg,(f) = d then there exists a polynomial ¢ such
that

* g =1
e (fiq) > %4

e ¢ is orthogonal to all polynomials of degree < d.

We let ) be the pattern tensor formed from ¢. Item 2 bounds (M, Q).
Item 3 is used to upper bound p*(Q).
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Main theorem

Let o < ap.

N deg,,,(f)
1Og:u (Fm,M) > 2k31

provided M > e(k — 1)22" 'm2.

We can embed the pattern tensor of OR into disjointness to obtain

n1/2k
R.{,4,(DISJ,,) = Q
1/4( ) ((k . 1)2k—122k1)



Where we lose

e n'/2* comes from the reduction. Curse of dimensionality.

e Factor of 22k comes in upper bounding 1*(Q)



More recently. . .

e We can develop an analogous norm ~ for the quantum case.
e |t turns out that all techniques to upper bound p* also work for v*
e \We can port essentially all known results to quantum case. In particular,

we can show bounds of size n/2F for explicit functions, n/22* for
generalized inner product.



