Is Multiplication Harder than Addition?
Arithmetical Definability over Finite
Structures

Troy Lee
December 11, 2001

Master’s Thesis
Institute for Logic, Language, and Computation

Under the Supervision of
Harry Buhrman

Acknowledgements

This thesis owes a lot to David Mix Barrington, as it was a conversation
with him that brought the problems discussed here to my attention. It
was also series of lectures given by him the year before which introduced
me to the field of complexity in the first place. I would like to thank Neil
Immerman and David Mix Barrington for checking the proof of Thm (7.1.1).

Harry Buhrman very generously gave his time to be my supervisor, to
give exposition improving comments on earlier drafts of the thesis, and to
be a formidable ping-pong opponent. He expeditiously provided me with
the resources and funding that made finishing the thesis much easier and
enjoyable. Thanks, Harry!

I would like to thank Johan van Benthem and Leen Torenvliet for giving
their time to sit on my committee, and Alan Woods for very quickly sending
me a copy of his thesis. Thank you Ingrid van Loon for putting up with my
persistent deadline pushing procrastination and general tendency towards
disorganization.

It is also a great joy to thank all the wonderful friends I have met in
Amsterdam, and my parents for letting me be so far away from them!

Contents

1 Introduction
1.1 Definability over the Natural Numbers
1.2 Definability over Finite Structures
1.3 Decidability and Counting
1.4 Outline

2 Background in Logic
2.1 Preliminary Definitions
2.2 Definability
2.3 How Logic Defines a Problem

3 Circuit Models
3.1 Why Circuit Models?
3.2 Uniformity
33 AC%and TC®
3.4 Correspondence between FO and AC®
3.5 FO(<,BIT) =DLOGTIME AC®

4 Ehrenfeucht-Fraissé games
4.1 How the gameisplayed
4.2 Generalized Games for Inexpressibility

5 With All and One, Can You Say Some?
51 TC® and Majorityo

6 Structural Complexity
6.1 The long and short of it
6.1.1 Addition.
6.1.2 Multiplication
6.1.3 Divisiono

19
19
21

23
23

6.2 Preview,

7 Arithmetical Definability

71 FO(<,BIT) =FO(<,TIMES)
7.2 FO(<,PLUS) CFO(<,TIMES)
7.2.1 Crane Beach Conjecture

7.3 FO(<, TIMES) = FO(<, DIVIDES)

8 Conclusions and Further Directions

CONTENTS

Chapter 1

Introduction

1.1 Definability over the Natural Numbers

Decidability questions have provided a large impetus to the study of defin-
ability of arithmetical predicates over the natural numbers. As elementary
number theory (w, +, -) is undecidable, the theory {(w,), for a set of pred-
icates N, is undecidable if addition and multiplication can be interpreted
within this theory—that is, roughly speaking, if there is a first-order sen-
tence defining addition and multiplication from predicates in N. Results
along these lines include:

e addition and the predicate SQ(z,), which holds iff 22 = y, can first-
order define multiplication [TMR53]

e successor and multiplication can first-order define addition [Rob49)

e successor and the predicate DIVIDES(z, y), which holds iff z divides
y, can first order define multiplication [Rob49]

e the ordering relation < and the predicate RELPRIME(z, y), which
holds iff the greatest common divisor of 2 and y is one, can first-order
define multiplication [Woo81]

On the other hand, Presburger [Pre29] showed that the theory (w,+)
is decidable. The transition between decidability and undecidability is still
not well understood—that is, to our knowledge, no recursive predicate P(x)
is known for which the theory {w, 4+, P) is undecidable yet unable to define
all recursive predicates.

6 CHAPTER 1. INTRODUCTION

1.2 Definability over Finite Structures

A major motivation to the study of definability over finite structures is the
intimate connection between logical expressiveness and complexity. This
connection was first brought out by Fagin [Fag74], who showed that the sets
of structures in NP are exactly those which can be defined by existential
second-order sentences. Since this initial result, the field of descriptive
complexity has developed logical equivalents for most complexity classes,
including P [Imm82, Var82], turning the problem of showing P # NP into
a problem of logical definability.

When translated into logic, a separation result between complexity
classes becomes an inexpressibility result. That is, suppose A, B are com-
plexity classes equivalent to the logics L4, Lp, respectively. Then if A is
strictly contained in B, there must be a language in B which cannot be
defined by L£4. Thus in logical terms a lower bound result shows that a
certain amount of expressiveness is required to define a problem, rather
than a certain amount of time or space. The main tool to prove inex-
pressibility results is Ehrenfeucht-Fraissé games, and with the equivalence
between expressiveness and complexity, this becomes another tool to sepa-
rate complexity classes.

1.3 Decidability and Counting

As with the gap between decidability and undecidability, we also see a
gap in definability on finite structures. Considering predicates on finite
structures, a useful concept is how high the set of predicates can ‘count’—
roughly speaking, in a string of zeros and ones of length n, how many ones
a first-order formula over this set of predicates can accurately identify. It
is known that PLUS cannot count beyond a constant, and that PLUS and
TIMES can count polylogarithmically in n. But no natural set of predicates
is known which can count beyond a constant but which is without the full
definability of PLUS and TIMES. In this thesis, we rule out two more
hopeful sets of predicates for this property, (<, TIMES) and (<, DIVIDES).

1.4 Outline

Chapters 2 and 3 introduce the logical and complexity background needed
for the rest of the thesis. Chapter 4 gives an introduction to Ehrenfeucht-
Fraissé games and tries to develop a generalized game technique for separat-
ing the expressiveness of logics and therefore separate complexity classes.
In Chapter 5, we discuss what is know about the structural complexity of

1.4. OUTLINE 7

addition, multiplication, and division, and the advantages of the descriptive
approach to the complexity of these problems. In Chapter 6 we show that
Julia Robinson’s [Rob49] two main results on arithmetic definability over
the natural numbers — that multiplication and ordering can define addition,
and that the divisibility relation and ordering can define multiplication —
can both be extended to finite structures !. The proof that multiplica-
tion and ordering can first-order define addition proceeds by first show-
ing that multiplication and ordering can first-order define the BIT predi-
cate, improving the previous result FO(<,BIT) = FO(<,PLUS, TIMES)
to FO(<,BIT) = FO(<, TIMES). We then use a standard construction
of addition with the BIT predicate to show that multiplication and or-
dering can first-order define addition. In conjunction with our result that
FO(<,BIT) = FO(<, TIMES), a recent result regarding the Crane Beach
Conjecture can be used to show that addition and ordering cannot first-
order define multiplication. This is the basis of our claim that multiplication
is indeed harder than addition.

! Actually what Julia Robinson shows is that multiplication and successor can define
addition and that divisibility and successor can define multiplication. These results
are stronger than results using ordering, as ordering can define successor, but successor
cannot define ordering. We do not consider definability with successor in this thesis, as
ordering is a much more natural relation on finite structures. On the other hand, Julia
Robinson was interested in applying her results to axiomatizations of arithmetic and
decidability, where successor is a more natural primitive.

CHAPTER 1. INTRODUCTION

Chapter 2

Background in Logic

2.1 Preliminary Definitions

A wvocabulary T = (R{*,...,R% ,c1,...,cs) consists of relation symbols and
constant symbols. The relation symbol R} is of arity a;. An interpretation
to these relational and constant symbols is given in a structure. A structure
A with vocabulary 7 is a tuple

A: <|A|7R.{47‘"JR’IAJCfJ"‘ch)'

The universe of A is the nonempty set |.A|. The relation R{! is an interpre-
tation in the universe |A| of the relation symbol R{. That is, Ry* C |A|%.
And for each constant symbol ¢; there is a specified element cf‘ € |Al

It is a basic tenet of descriptive complexity to work over finite universes,
as computers necessarily deal with finite objects. Thus in our case generally
|Al ={0,...,n—1}.

The main structures we will be looking at in this thesis are structures
of binary strings, with vocabulary 7, = (<2,I{,0,1), and universe S =
{0,...,n — 1}. The elements of S are thought of as positions in the string,
< is the usual ordering on these positions, and the set I; represents a
particular string s under the interpretation that a 1 is written at position
k of s iff k € I;. We also assume that the universe S contains at least two
nonequal elements, denoted by the constants 0 and 1.

2.2 Definability

Structures are the objects which logical languages speak about. Exactly
which properties we can express about a structure depends on the logical

9

10 CHAPTER 2. BACKGROUND IN LOGIC

language we are using. In this thesis, we will be mainly considering the
expressiveness of first-order languages with arithmetic predicates.

The first-order language for a vocabulary 7, denoted as FO.., consists
of the set of formulas built up from the relation and constant symbols of
T, the logical relation =, logical connectives A,V,—, variables z,y, z2, ...,
and quantifiers V,3. When the vocabulary is unambiguous, we will drop
the subscript 7.

To do arithmetic, we will be supplementing the first-order language with
additional predicates:

PLUS(4, j, k) which holds iff 4 + j = k for positions 4, j, k

TIMES(i, j, k) iff i - j = k

DIVIDES(¢, k) iff there is a j such that i-j =k
e BIT(i, j) iff bit j of the binary representation of 7 is 1.

For a set of numerical predicates N, we denote by FO(N) the first-
order language where formulas are also allowed to include predicates from
N. We say that a set of numerical predicates N can first-order define a
k-ary predicate P iff there exists a FO(N) sentence ¢ such that for all
Tlyeeey Lk,

P(:L'l,...,.'Ek) — ¢($1,...,$k)

As an easy example, note that the predicate PLUS can define < as
follows:
z < z <= 3Jy(PLUS(z,y, z) A -PLUS(y,y,v))

Thus FO(<,PLUS) and FO(PLUS) have the same expressive power, and
in general we use this fact to our notational convenience by not explicitly
listing < in a set of predicates that contains PLUS.

2.3 How Logic Defines a Problem

To illustrate the connection between complexity classes and logical lan-
guages, we first more formally define what a problem is. A problem, or
alternatively a property, is a set of structures of a given vocabulary. For
example, in the vocabulary of graphs, the problem of three-colorability is
the set of graphs which are three colorable. We can also think of this set as
representing the property of being three-colorable. When in the vocabulary
of strings, we will also refer to a problem as a language, because in this case
a set of structures is a set of words on the alphabet {0,1}.

2.3. HOW LOGIC DEFINES A PROBLEM 11

Now the ability of a logical formula to define a problem becomes clear,
because a logical formula also specifies a set of structures, namely the set of
structures which are models of that formula. Continuing the above example,
the problem three-colorability is definable in a logic £ iff there exists a
formula ¢ € £ such that the graphs satisfying ¢ are exactly the 3-colorable
graphs.

This way of thinking can be extended to see the correspondence between
a logic and a complexity class.

We say that a logic £ captures a complexity class C iff the following
hold:

e for any C-machine T, there is a formula ¢ of £ whose models are
exactly those structures accepted by T'.

e for any formula ¢ of £, there is a C-machine 7" which accepts exactly
those structures that are models of ¢.

In the next chapter we give a concrete example of this correspondence,
showing that first-order logic with arbitrary numerical predicates captures
the circuit complexity class ACP.

12

CHAPTER 2. BACKGROUND IN LOGIC

Chapter 3

Circuit Models

3.1 Why Circuit Models?

The arithmetic operations we will be considering in this thesis are all rela-
tively simple in terms of complexity — in fact they can all be computed in
logarithmic space. To achieve greater resolution in classifying the complex-
ity of arithmetic, we must look at the smaller complexity classes described
by circuit models. As circuit models are perhaps less familiar than Turing
machine models, we will give a short overview.

Circuit models are roughly based on the design of circuits in computers.
These abstracted circuits are represented as directed acyclic graphs, with
nodes labelled as input, constant, AND, OR, NOT, or output nodes. Input
and constant nodes have zero fan-in, while output nodes have fan-out zero.
We will consider circuits with a single output node, thus circuits which
compute a boolean function f : {0,1}" — {0,1}. The relevant resource
measures of a circuit are its size, that is its number of nodes, and its depth,
the length of the longest path in the circuit.

A salient difference between the circuit model and the Turing machine
model is that a circuit has a fixed input size n, its number of input nodes,
while a Turing machine can accept variably sized input on its tape. Thus to
do real computation, we need a family of circuits C = {C;};cn. We say that
a circuit family C accepts the language L iff for all n € N and w € {0,1}"

w € L < (), outputs 1 on input w

13

14 CHAPTER 3. CIRCUIT MODELS

3.2 Uniformity

One subtlety of circuits absent from Turing machine models is uniformity.
Uniformity imposes restrictions on how complicated a circuit can be to
build. A circuit family C is C uniform iff there is a C Turing machine which
outputs a description of the circuit C}, on input 0. A non-uniform circuit
family is acutally able to do uncomputable things, as a constant gate could
be described as being 1 if the nth Turing machine halts and 0 otherwise.
In a C uniform circuit family, on the other hand, the value of constant
gates are computable in C. Thus uniformity restrictions limit the amount
of precomputation that can be built into the design of the circuit.

In choosing a uniformity class, we want something that is computation-
ally weaker than the circuit class itself—therefore no precomputation can
be built into the circuit which could not theoretically be done by the circuit
itself. On the other hand, we still want a uniformity condition which gives
a circuit class that is robust under small changes in the input and encoding.

The most widely accepted uniformity condition for circuit classes is
DLOGTIME uniformity, equivalent to FO(<, BIT) uniformity [BIS90].

3.3 AC? and TC?

Two circuit classes relevant to arithmetical operations are AC® and TC°.
The class AC" consists of languages accepted by circuits which are of poly-
nomial size and of depth O(log’(n)). Thus ACP circuits are of polynomial
size and constant depth. In AC! circuits, nodes are labelled with AND,
OR, NOT, and constant gates, where the AND and OR gates are allowed
to be of unbounded fan-in.

The circuit class TC? generalizes AND and OR gates to allow threshold
gates. A threshold gate with threshold k evaluates to 1 iff the sum of its
inputs is greater than or equal to k. Again TC® circuits are polynomially
sized and of depth O(log’(n)). It is easy to see AC® C TC? as an AND gate
is a threshold gate with the threshold set to the number of inputs, and an
OR gate is a threshold gate with a threshold of one.

3.4 Correspondence between FO and AC®

The equivalence between FO(<, PLUS, TIMES) and DLOGTIME uniform
ACY was mentioned in the introduction. In this and the next section, we
will sketch a proof of this result. We start with the easier task of showing
equivalence in the nonuniform case.

3.4. CORRESPONDENCE BETWEEN FO AND AC° 15

Theorem 3.4.1 ([Imm87]) Let L be a language over the alphabet {0,1}.
Then the following are equivalent:

1. L is recognized by a family of (possibly nonuniform) AC® circuits

2. There is a set of numerical predicates N and o sentence ¢ € FO(N)
such that L 1is the set of models of ¢.

Proof (2 = 1) We may assume ¢ is in prenex form and of quantifier depth
k. Thus we can write ¢ as Q121 ... Qo where each Q; is either a V or a 3
quantifier, and o is quantifier free. Fix the input size n. We will build an
ACP circuit which accepts all the strings of length n which are models of ¢.

Within the circuit, we represent a V quantifier as an AND gate with n
inputs. Thus for the output of the gate to be true, the input from each
position must be true.

A 3 quantifier is represented within the circuit by an OR gate with n
inputs. Thus the output of this gate is true if the input from at least one
position is true.

We construct a tree of gates following the quantifiers in ¢, as depicted
in the figure below. The size of this tree is n*, and on the n* paths from
the root to a leaf, all possible assignments of n positions to the k variables
are realized.

x k=0 x k=1 x k=n-1

What remains is to evaluate o at each leaf. As o is quantifier free,
it is a boolean combination of of (possibly negated) atomic expressions—
expressions of the form x; = x;,I(z;) or P(t1,...,ty) where P € N is
an m-ary predicate, and each t; € {z1,...,z;}. At each leaf, the variables
Z1,---,Z have assumed a definite numerical value. This in turn determines

16 CHAPTER 3. CIRCUIT MODELS

a numerical value 0 or 1 for each the atomic expressions mentioned above.
Thus We can represent the evaluation of these expressions with a constant 0
or 1 gate, and combine these gates according to o using the AND, OR, and
NOT gates at our disposal. The number of symbols in ¢ does not depend
on n, thus the part of the circuit representing o will have a constant number
of gates.

(1 = 2): This inclusion is more difficult, and we only sketch the idea
here. What we wish to illustrate is how the computation of a circuit of fixed
size C, can be simulated in a first-order language by adding new numerical
predicates.

As C,, is an AC° circuit, it must be of polynomial size and so have fewer
than n* nodes for some k. Thus we can number each node by using a vector
x of k variables. We can then define numerical predicates describing the
gate type at each node number:

e INP(x,t) meaning the gate labelled by vector x is an input gate,
inputting position ¢ of the input string

e OUT(x) the gate labelled by x is the output gate
e AND(x),0R(x),and NOT(x) to denote the type of gate at x
e CHILD(x,y) to mean that gate x is a child of gate y

Now we can start to model the flow of the computation through the
circuit by defining more predicates such as “x is an input gate and evaluates
to one on the given input”:

o INP(x,t) A (t) = ONE(x)

Then we can describe when the gates one level up from the input evalu-
ate to one, for example to express “gate x is an AND gate at level 1 which
evaluates to 1”7 is the conjunction of the following formulas:

e AND(x)
e Vy(CHILD(y,x) — 3t INP(y,t))
e Vy(CHILD(y,x) - ONE(y))

We can continue in this manner defining “gate x is a gate at level d with
value 1,” and so on until we reach “gate x is an output gate with value 1”.
Then the circuit accepts a string iff this predicate is true.

3.5. FO(<,BIT) = DLOGTIME AC° 17

3.5 FO(<,BIT) = DLOGTIME AC’

The above argument, with more attention to uniformity, yields the following
theorem:

Theorem 3.5.1 Let L be a language over the alphabet {0,1}. Then the
following are equivalent:

1. L is recognized by o« DLOGTIME AC° family of circuits

2. There is a sentence ¢ € FO(<,BIT) whose set of models is L

Proof (1 = 2): We follow the previous proof, additionally armed with the
fact that DLOGTIME C FO(<,BIT), Prop 8.1 of [BIS90]. This means
that if the description of the circuit—the parent-child relationships and
gate type predicates—can be computed in DLOGTIME, then they can also
be defined in FO(<,BIT).

(2 = 1): This direction hinges on the fact that the BIT predicate can
be simulated in DLOGTIME, Lemma 7.1 of [BIS90]. The only part of the
construction in the previous thm that was potentially nonuniform was the
evaluation of the atomic expressions in the quantifier free part of ¢. In
FO(<,BIT), the atomic expressions are of the form z; < z;,I;(x;), and
BIT(z;, ;). All of these can be computed in DLOGTIME. |

18

CHAPTER 3. CIRCUIT MODELS

Chapter 4

Ehrenfeucht-Fraissé games

4.1 How the game is played

Ehrenfeucht-Fraissé games are the main tool for proving inexpressibility
results in first-order logic. The game is played on two structures, A and B,
of the same vocabulary 7. There are two players in the game, Spoiler and
Duplicator. Spoiler, with his moves, is trying to point out a difference be-
tween the structures, while Duplicator chooses her moves to imitate Spoiler
and mask any differences between the structures.

Spoiler moves first by picking an element in one of the structures. Du-
plicator then moves, choosing an element in the other structure. Play con-
tinues in this way, at each turn Spoiler being at liberty to choose in which
structure he plays. At the end of k£ rounds, elements aq,...,ar have been
chosen from A, and elements by, ...,b; have been chosen from B. Dupli-
cator wins k-round Ehrenfeucht-Fraissé game for FO(N) iff the mapping
a; — b; is a partial 7 U N isomorphism. That is, iff

1. for alli,j < k,a;, =a; < b;=1b;

2. for every m-ary relation symbol R in 7, and all 41, ..., i, < k, it holds
that 1’2"4(0,1'1 yeees a,-m) <~ RB(bil, ceey bzm)

3. for every m-ary predicate P € N/, and all 41,...,4,, <k, it holds that
'P(ail,.. .,aim) — P(b,'l,. ..,b,’m)

Duplicator has a winning strategy iff she can win the game for any

choice of spoiler’s moves. As the game is determined, Spoiler has a winning
strategy iff Duplicator does not.

19

20 CHAPTER 4. EHRENFEUCHT-FRAISSE GAMES

The usefulness of the game comes from the following theorem. Recall
that a property P is a set of structures of a given vocabulary.

Theorem 4.1.1 (Ehrenfeucht, Fraissé) A property P is definable in FO(N)
iff there is a k € N such that for every A € P,B & P, Spoiler has a winning
strategy in the k-round game for FO(N) on A and B.

We can transform this theorem into a necessary and sufficient condition
for the inexpressibility of a property over FO(N) as follows. If for some
property P and A € P and B € P Duplicator has a winning strategy in
the Ehrenfeucht-Fraissé game for FO(N) of length k, then P cannot be
expressed by a FO(N) sentence of quantifier depth k. For if it could, then
by definition there would be a sentence ¢ of quantifier depth k£ which is
satisfied by .4 but not by B. Then by theorem 4.1.1, Duplicator would not
have a winning strategy, a contradiction.

Theorem 4.1.2 A property P is not definable in FON) iff for all k € N
there exists A € P,B € P such that Duplicator has a winning strategy in
the k-round game for FO(N)

We will show how these theorems can be used with a simple example.
Over the vocabulary of strings consider the property or language L = 0*1*,
the set of strings which can be written as the concatenation of a string
consisting only of zeros followed by a string consisting only ones. This
language can be defined in FO(<) with the following sentence.

Vy(y <z — -L{y) Az <y — ()

This sentence asserts the existence of a position x, before which occur only
zeros and after which occur only ones. Now we wish to show that this lan-
guage cannot be defined in FO when ordering is not present, using theorem
(4.1.2).

Fix k € N. Let u = 000111 € L and v = 111000. We define a strategy
for Duplicator to win the k-round game for FO on these strings. If Spoiler
plays at position a; on u, then Duplicator chooses b; = n — a; to play in v.
Similarly, if Spoiler instead plays into v with b;, then Duplicator moves to
a; = n — b;. Note that if a; = n — b; then n — a; = b;, thus to show that
this strategy is a win for duplicator, we have to show that the mapping
a; — b; = n — a; is a partial isomorphism. Looking at the conditions listed
above we have to check:

l.ai=a; < n—a;=n-—aqj

2. I'(a;) < I?(n — a;) as v is the string u written backwards

4.2. GENERALIZED GAMES FOR INEXPRESSIBILITY 21

3. As we have no numerical predicates, there is nothing more to check!

Now we have shown that there is a language, namely 0*1*, which is
expressible in FO(<), but not in FO. This is a simple example of how
Ehrenfeucht-Fraissé games can be used to separate logics, which, coupled
with the equivalence of logics and complexity classes, can be used to sepa-
rate complexity classes.

There are limits to the capability of this technique in separating larger
complexity classes, but Ehrenfeucht-Fraissé type games have, for example,
shown that monadic NP is different from monadic coNP [Fag75]. To
extend the applicability of Ehrenfeucht-Fraissé type games we next talk
about developing a more general technique for Ehrenfeucht-Fraissé games
to prove inexpressibility results.

4.2 Generalized Games for Inexpressibility

We wish to formulate a general game technique to prove inexpressibility
results. Ehrenfeucht-Fraissé games can be used to prove inexpressibility re-
sults for FO(N') because the conditions for a winning strategy completely
characterizes expressibility in FO(N'). To use this technique towards sepa-
rating more complexity classes, we must first develop games to characterize,
in the sense of thm (4.1.1), other logics relevant to complexity. For logics
more expressive than FO, characterizing games will have more stages and
components than the standard Ehrenfeucht-Fraissé game to represent this
added expressitivity. For example, the game developed by Ajtai and Fa-
gin [AF90] characterizing monadic existential second-order logic (termed
monadic NP) begins with a round of “coloring” the structures. Coloring is
really the selection of sets, the set of elements that are red, the set of ele-
ments that are green, ...and represents within the game the quantification
over sets possible with existential second-order quantifiers in monadic NP.

Say that we wish to prove inexpressibility results about a class of sen-
tences C. The first step is to design a game with parameters P (including
factors like number of rounds, number of colors, etc.), called the Name
Game after ourselves, which characterizes C in the sense that we can prove
the theorem

Theorem 4.2.1 Duplicator has a winning strategy in the parameter P
Name Game on structures A and B iff A and B agree on the sentences

of C.

Then we will also get the companion theorem

22 CHAPTER 4. EHRENFEUCHT-FRAISSE GAMES

Theorem 4.2.2 P is not expressible in the class of sentences C iff for every
set of parameters P there is A € P and B € P such that duplicator has a
winning strategy in the P Name Game on A and B.

Ajtai and Fagin used this game technique to show that graph connec-
tivity is not expressible in monadic NP, thus separating monadic NP from
monadic coNP.

Chapter 5

With All and One, Can
You Say Some?

A general theme of this thesis is how logical techniques can help to answer
problems in complexity. In this chapter we pause to remember that the
relationship is mutual, with an example of how results from complexity can
help to answer logical questions.

The familiar quantifiers V and 3 can be used to express that all members
or at least one member of a finite structure has a given property. Our
question is the following: Is there some first-order formula which can express
that most members of a finite structure have a given property?

5.1 TC° and Majority

Results from complexity can help us answer this question. In chapter 3 we
introduced the circuit class TC? consisting of polynomially sized, constant
depth circuits with threshold, NOT, and constant gates. We now show that
TCP can be equivalently defined with majority gates instead of threshold
gates. The output of a majority gate is 1 iff a majority of its inputs are 1.

Consider a threshold gate with threshold & and s inputs. To construct a
majority gate with the same behavior, we can pad the input with ¢ constant
0 or 1 gates such that exactly k inputs must be 1 in order to have a majority.
That is, we choose ¢ such that [£H] = £.

e 2k — s > 0 means that k is larger than half the inputs, thus we add ¢
more inputs with 0.

e 2k — s =0 in this case we do not have to do anything.

23

24 CHAPTER 5. WITH ALL AND ONE, CAN YOU SAY SOME?

e 2k —s < 0 means that k is less than half the inputs, thus we pad with
t inputs of 1.

If we replace every threshold gate with a majority gate in this way, our
new circuit will still be polynomially sized as we add at most n constant
nodes to each of n! nodes in the circuit, thus we add at most n!*! nodes.
The depth of the circuit does not change. Thus every circuit in TC? can be
transformed into a polynomially sized, constant depth circuit with majority,
NOT, and constant gates.

Another thing to consider is the uniformity of our circuit. From a plan
of the original circuit, to construct the new circuit the only calculations we
have to make is 2k — s. We know that this calculation can be defined in
FO(BIT) or equivalently in DLOGTIME. Thus for any TC® circuit with
uniformity DLOGTIME or greater, we can construct a majority circuit of
the same uniformity.

Now we can follow the same argument used in thm (3.5.1) to show
that FO(BIT) coincides with DLOGTIME uniform AC° to show that FOM
coincides with DLOGTIME uniform T'C°. Thus our original question can
now be rephrased as does AC® = TC°?

These complexity classes have been separated. The language PARITY,
containing the strings with an odd number of ones can be decided by a very
uniform TCP circuit. An example of the circuit for n = 5 is given in the
figure below. Numbers in the circles indicate thresholds.

5.1. TC® AND MAJORITY 25

In general the design of the circuit is to solve the problem as follows.
Assume the input length n = 2¢ — 1 is odd. A 2¢ — 1-bit string has an odd
number of ones iff it has exactly 2k — 1 ones for some 1 < k < £. This
string has exactly 2k — 1 ones iff the gate with threshold 2k fails and the
one with 2k — 1 passes. By ORing together circuits to test for 2k — 1 ones
for 1 < /¢ < k, we obtain our threshold circuit for parity.

On the other hand, parity cannot be decided by DLOGTIME uniform
AC? circuits [FSS84]. This is a very interesting lower bound result, but is
outside the scope of this thesis. This result shows AC® ¢ TC?, and thus
there is no first-order formula which can define the majority quantifier.

To put this more figuratively, with ‘all’ and ‘one’, we cannot say ‘most’,
or even k for a constant k. Unfortunately this discussion does not help to
separate the meaning of the words ‘couple’, ‘few’, and ‘some’.

26 CHAPTER 5. WITH ALL AND ONE, CAN YOU SAY SOME?

Chapter 6

Structural Complexity

A difficulty in classifying the complexity of arithmetical operations is that,
as these problems are relatively simple computationally, their complexity is
sensitive to changes in representation. In descriptive complexity, problems
and inputs are represented as predicates, and thus the particularities of how
inputs and outputs are encoded can be avoided. This leads to a more robust
classification of the complexity of arithmetical problems. In this chapter we
survey the structural complexity of arithmetical problems before turning to
their descriptive complexity in the next.

6.1 The long and short of it

The short answer is Logspace. Addition, subtraction, multiplication, and
division of n-bit numbers can all be done in space logarithmic in n. Division
was only shown to be in Logspace relatively recently [CDL].

For a longer answer, we must pay attention to how each problem is
encoded, and if we are working with long (O(n) bits) or short (O(logn) bits)
numbers. Logically, short numbers can be represented directly as variables,
or vectors of variables, whereas long numbers must be represented with
predicates. For example, the BIT predicate allows us to make reference to
numbers as large as 2" — 1 when the size of our structure is only n.

The circuit and descriptive complexity classes considered in this thesis
are closed under a polynomial change in the input size. The easiest way to
see this is that a polynomial change in the input size will only cause the
size of our circuit to change by a polynomial, and thus the circuit will still
be in the same class. That the descriptive complexity classes we consider
are also closed under a polynomial change in input size can be seen by their

27

28 CHAPTER 6. STRUCTURAL COMPLEXITY

equivalence with the respective circuit classes. For notational convenience
in the following, we will usually specify an input size, but keep in mind
that a result for input size n or logn can be generalized to long or short
numbers.

6.1.1 Addition

Consider first the problem of adding two n-bit numbers, a = a,_1...aq
and b = bp_1...bg. When the input of @ and b is given in the form
aoboaiby ...a,_1b, 1, then a constant space Turing machine can output
their sum. If, on the other hand, the input is given sequentially a,,_1 ... ag
b1 ...bg, then the problem can no longer be solved in a constant amount
of space 1.

Using predicates we can consider both the decision and graph versions
of the addition problem on n-bit numbers:

e ADD(X,Y,4) which holds iff the ith bit of X + Y is 1, and
e ADD(X,Y, Z) which holds iff X +Y = Z

These two problems are FO(<, BIT) reducible to each other, and both can
be solved by DLOGTIME uniform ACP circuits of size O(n?). To see that
these problems are in DLOGTIME uniform AC?, we give a FO(<, BIT)
formula expressing ADD(X,Y,).

We use the “carry-look-ahead” algorithm. To compute the ith bit of
X +Y we first see if a carry has been propagated to bit 4:

Pearry(X, Y1) = Fj(j <iABIT(X,j) ABIT(Y,)
A Vk(j < k <i— BIT(X,k) VBIT(Y,k))

The formula @earry(X,Y,4) holds if a carry is generated at a position less
than ¢ and is then propagated through all the intervening positions. Now
the ith bit of X +Y will be 1 if exactly one of BIT(X,), BIT(Y, %), ¢pcarry(4)
hold, or if all three of them hold. The easiest way to express this is with
the exclusive or operation @,

a®f = aep (6.1)
¢add(Xa Ya Z) (BIT(Xa l) S BIT(Ya Z)) 57 ¢carry(Xa Y) Z) (6-2)

lFor a proof, note that the language ap—1...00€bm—1...boecm ...co, where
an—1...00 +bm—1...bo = ¢m ... co in binary and m > n, has infinitely many Myhill-
Nerode equivalence classes. Thus by the Myhill-Nerode Thm, there is no deterministic
finite automaton which accepts this language. On the other hand, the language with
the bits interleaved apboco - . . mbmcm has, by our count, 16 Myhill-Nerode equivalence
classes.

6.1. THE LONG AND SHORT OF IT 29

0 0 Tn—1 0 0 LTn—2 0 0 Zo
x 0 0 1 0 0 1 0 ... 0 1
0 0 Tpn—1 0 0 LTpn—2
0 0 Tpn—2 0 0 In—3
0 ... 0 =z 0 0 0
P

Table 6.1: Illustration of a first-order reduction from PARITY to MULT

6.1.2 Multiplication

We use the predicate MULT(X,Y,i) to represent multiplication of n-bit
numbers. Again there is a FO(<, BIT) equivalence between this predicate
and the multiplication graph predicate MULT (X,Y, Z) 2.

Multiplication of n-bit numbers cannot be done by constant depth, poly-
nomially sized circuits, as there is a FO(<, BIT) reduction from PARITY
to MULT (X, Y,) [FSS84].

The idea of the reduction is best illustrated by Table (6.1). To determine
the parity of X = 2,,_1 ...z we construct two n? bit numbers, X,Y where

n—1

X = Z .’I,‘z'2in
=0
n—1

Yy = Zan

i=0

In the product
n—1)
XY = Z Cz'21n
=0

each ¢; is a sum of at most n bits, and thus its binary representation will
fit in logn so that there are no carries from one block to the next. Then
the low order bit of ¢,,_1
n—1
Cp—1 = Z T
i=0

2From a descriptive complexity point of view, this equivalence is easy to see. Thinking
solely in terms of ACO reductions, however, it is not as obvious and Sam Buss wrote a
small note [Bus91] which goes through the details. Buss was interested in this question
in part because the non-existence of constant depth polynomial size circuits for the graph
of multiplication implies that the Ag—predicates of bounded arithmetic are not in ACO.

30 CHAPTER 6. STRUCTURAL COMPLEXITY

holds the parity of the sum of the z;’s.

As with parity, multiplication of long numbers can be computed with
TCO circuits. In fact, unbounded fan-in, constant depth circuits with NOT
gates, AND gates, and gates for multiplication exactly capture TC® [Bus91].
To our knowledge it is still an open problem, conjectured to be false, if
multiplication can be reduced to parity.

6.1.3 Division

Out of the familiar arithmetical operations, the complexity of division was
the most difficult to classify. In fact it was not until recently that division
found its complexity “home”, a long process finished by Bill Hesse in show-
ing that the predicate DIVISION(X, Y, 1) is complete for DLOGTIME TC°
[HesO01].

6.2 Preview

In the next chapter, we will be examining the complexity of addition and
multiplication of short numbers. These problems will be represented re-
spectively by the predicates PLUS(, j, k) and TIMES(4, j, k), where i, j, k
are variables thought of as representing positions in a string. Both of these
predicates can be expressed in FO(<, BIT), and so are in DLOGTIME uni-
form AC’. What we will show in the next chapter is that, although it
is doubtful we can separate these problems in terms of circuit complexity
classes, we can separate them in terms of descriptive complexity classes —
in fact FO(<,PLUS) C FO(<, TIMES).

Chapter 7

Arithmetical Definability

Julia Robinson’s paper [Rob49] contains two main results about first-order
arithmetical definability over the natural numbers. First, that multiplica-
tion and successor can define addition, and secondly that the divisibility
relation and successor can define multiplication, and hence also addition.

In this chapter we show that these results can be transferred to the
finite case, where we use the ordering relation instead of successor.

7.1 FO(<,BIT) = FO(<, TIMES)

Robinson defined addition with multiplication and successor with the fol-
lowing formula:

z+y=z < S(z-2)-Sly-2)=85(z-z-5(z-y)).

This formula, however, cannot be naively applied to define addition over
finite structures. If our inputs are of order k, then to check this equality, we
will have to store a number of order k*, exceeding the size of our structure
when k > n(1/49).

We take a different approach to defining addition in terms of multipli-
cation and ordering. First we show the BIT predicate can be defined in
terms of multiplication and ordering. We do this by following the existing
proof that FO(<, BIT) = FO(PLUS, TIMES) [Imma88], modifying the sec-
ond half of this proof to show that the use of PLUS is not essential. Then
(6.2) gives a definition of addition in terms of BIT.

Theorem 7.1.1 Let 7 be a vocabulary that includes ordering. If TIMES €
7 then BIT is first-order definable. In particular, FO(<,BIT) = FO(<, TIMES).

31

32 CHAPTER 7. ARITHMETICAL DEFINABILITY

Proof We proceed with a series of definitions. First observe that the rela-
tions “zx is the successor of y”, “x divides y”, “y is prime”, and “y is a power
of 2”7 can all be defined in first-order logic with < and TIMES. These re-
lations will be denoted respectively as SUC(z, y), DIVIDES(z, y), prime(y),
and pa(y).

As an approach to defining BIT(z,4) we first define BIT'(x,y), which
holds iff 2¢ = y and BIT(z,i). For ease of notation, in what follows we
treat the relations TIMES and SUC as functions. Note, however, that the
relations can be reinserted with an extra quantification. In the proof given
in [Imm88], BIT' is defined as follows:

BIT' (z,y) = pa(y) A uuy +y < z Az < 2uy + 2y)

The new part of this proof is the observation that we can eliminate the use
of + in the above formula by factoring.

BIT'(z,y) = pa(y) A Ju(y(S(2u)) < z Az < 2yS(u))

As the definition of BIT' contained the only use of + in the original proof,
we can now continue following the exposition of Immerman.

BIT' allows us to copy a sequence of bits. The following formula says
that if y = 2! and z = 2/ where y > 2, then bit i + 5 ...4 of z are the same
as bits j...0 of c.

COPY(z,y,2,¢) = (Yu.pa(u) Au < 2)(BIT' (z,yu) < BIT' (c,u))

All that remains to express BIT is to define the relation 2¢ = 3. We can
express this by encoding the following recurrence,

2=y = (3j))(32.27 =2)(i =2j+ 1Ay =22°Vi=2jAy = 2%). (7.1)

That is, by explicitly encoding a small power of 2, and then verifying the
logi recursive claims of (7.1), we can express that 2¢ = y. We do this by
asserting the existence of three variables, Y, I, and Z. For each exponent k
occuring in the recursion (7.1), we put a “1” in position k of Y, and write the
binary representation of k in I, beginning from position k. Actually I only
records the exponents k for which logk < k— k/2, or k > 2logk, to ensure
that no exponents overlap. We can explicitly encode the computations
of (7.1) when the exponents cannot be recorded, as in this case k < 3.
We mark the final bit of the binary representations written in I with a
“1” placed in the same position of Z. Then we can extract the exponents

7.1. FO(<,BIT) = FO(<, TIMES) 33

Table 7.1: Values of Y, I, and Z to express 2'5 = 32, 768

Position | 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Y o 1 0 O O O O OO 1 O0O0O0 1010
I 0 1 1 1 1 0O O OOT1T 1 1 0 1 1 0 O
Z o o0 o o0 1 0o O0 0O 0 O0O0O 1001 00

recorded in I with the relation PLACE that says that the exponent written
in I beginning with position z is c:

PLACE(I,z,c) = EIy(y <z A BIT(Z,y)AVz(y <z <z — -BIT'(Z,2))
A COPY(I,x,y,C))

The role of the variables Y, I, and Z is best illustrated with an example.
To express the proposition 215 = 32, 768 the variables Y, I, and Z have the
values given in table 1.

The leftmost “1” in Y is in the place of 2!, and written beginning
from position 15 in I is the exponent 15 written in binary, 1111. This
arrangement allows us to encode the first computation in (7.1), namely
that if y is the largest number satisfying BIT'(Y,y), in this case 32,768,
and i is the leftmost number written in I, in this case 15, then 2¢ = .
Looking to the next “1” in Y in the place of 27 we can read the exponent 7
recorded in binary, 111, in I, and again we can use these positions to verify
the computations of (7.1). Finally, there is a “1” at the place of 23 in Y,
and exponent 3 written in binary from position 3 of I. This allows us to
anchor the recursion by explicity verifying with TIMES that 23 = 8.

Following the reasoning of this example, we construct a first-order for-
mula which checks that Y, 7, and Z have the proper properties. Namely
this formula says that if z is the largest number for which BIT'(y, z), then
x=y.

Vz (BIT'(Y,z) AVz (BIT'(Y,2) - 2 < z) - z =y)

and that the leftmost number represented in I is ¢
V12 (BIT’(I, 21) A Vz(BIT'(I,2) = z < z1) A BIT'(Z, 25)
A Vz(BIT'(Z,z) — z < z2) — COPY(, xl,mg,i)).

Then the formula checks that consecutive positions &, in Y with a “1” are
related by 2% = 22141 or 28 = 22! and corresponding representations in T

34 CHAPTER 7. ARITHMETICAL DEFINABILITY

satisfy k = 2] + 1 or k = 2[, accordingly:

Vay (:c <y A BIT'(Y,y) ABIT'(Y,2) AVz(y < z < © — ~BIT'(Y, 2))
— & =2y? AVed(PLACE(I, z,c) APLACE(],y,d) — ¢ = 5(2d))
V@ =y?AVed(PLACE(I, z,¢) A PLACE(I,y,d) — ¢ = 2d)).

Finally, for the smallest exponent j recorded in I the formula explicitly
hard-wires the value of 2/. We know j < 6 because if j > 6 then j div 2 >
2log(j div 2) and so would be recorded as well in I.

This gives the formula that defines the relation EXP2(i,y) as desired,
and at last we have our expression for BIT,

BIT(z,i) <= 3Jy(EXP2(i,y) A BIT (z,y)). (7.2)
Corollary 7.1.2 PLUS is first-order definable with < and TIMES

Proof By Thm (7.1.1), there is a first-order definition of BIT with TIMES
and ordering. Formula (6.2) then gives a definition for PLUS in terms of
BIT and ordering. |}

A natural question to ask if ordering is necessary in the above corollary.
The next theorem says that it is.

Theorem 7.1.3 TIMES cannot first-order define PLUS.

Proof Suppose to the contrary that ¢(z,y, 2) € FO(TIMES) defines PLUS.
We define an automorphism f on (n, TIMES,0, 1) as follows. Write x € n
as ¢ = 2¥37y, where y contains no factors of 2 or 3. Then we define f :
x +— 293%y. This is an automorphism as f(zyxy) = f(2k1 k2371402, 4p) =
2ir+izgkitkey, o — f(21)f(x2). This map does not respect addition, how-
ever, as f(24+2) = 9— =6 = f(2) + f(2). This contradicts the existence of
¢ as isomorphisms preserve the truth of first-order formulas. |

Corollary 7.1.4 Ordering is not first-order definable with TIMES.

Proof Suppose TIMES could define <. Then by corollary (7.1.2) TIMES
could define PLUS, contradicting thm (7.1.3). |}

7.2 FO(<,PLUS) C FO(<, TIMES)

We have now shown FO(<,PLUS) C FO(<, TIMES), as FO(<, TIMES) =
FO(BIT) = FO(<,PLUS, TIMES) D FO(<,PLUS). The most direct way

7.2. FO(<,PLUS) C FO(<, TIMES) 35

to show that in fact FO(<,PLUS) C FO(<, TIMES) would be to find an
example of a language L definable in FO(<, TIMES) and then show using
Ehrenfeucht-Fraissé games that L is not definable in FO(<, PLUS).
Unfortunately, we have not yet found a proof this direct. The proof
instead goes by way of results relating to the Crane Beach Conjecture.

7.2.1 Crane Beach Conjecture

To introduce the Crane Beach Conjecture, we first must develop a few
definitions. A neutral letter is a letter e that be inserted or deleted in a
string without affecting the string’s membership in a language L.

Definition Let A be an alphabet and L C A*. A letter e € A is called
neutral for L if for any u,v € A*, it holds that uv € L iff uev € L.

As an example, 0 is a neutral letter for PARITY. As membership in PAR-
ITY only depends on the number of ones a string contains, zeros can
be arbitrarily inserted to no effect. On the other hand, the language
{0"1™ : n € N} does not have a neutral letter in {0,1} as membership
in this language depends on a very specific numerical relationship between
the positions of zeros and ones in the string.

The idea behind considering languages with neutral letters is that, in
a language with a neutral letter, only the relative positions of the letters
should matter and not any more complicated numerical relationship, as in
0™1™. This line of thinking led to the following conjecture.

Definition (Crane Beach Conjecture) Let A be a set of numerical predi-
cates. We say the Crane Beach Conjecture is true for N iff every language
L € FO(<,N) that has a neutral letter is also definable in FO(<).

A recent paper on the Crane Beach Conjecture [BILT01] shows it is true
for (<,PLUS), but false for (<,PLUS, TIMES). This means that there
exists a language, definable in FO(<,PLUS, TIMES), which violates the
Crane Beach Conjecture, and thus is not definable in FO(<, PLUS). To-
gether with FO(<, PLUS, TIMES) = FO(<, TIMES) from Thm (7.1.1) this
gives

Corollary 7.2.1 FO(<,PLUS) C FO(<, TIMES)

The proof that the Crane Beach Conjecture is true for (<, PLUS) still
uses Ehrenfeucht-Fraissé games, but in a more indirect way. The proof

proceeds by contradiction, assuming that there is a language L definable
in FO(<,PLUS) but not in FO(<). If L is not definable in FO(<), then

36 CHAPTER 7. ARITHMETICAL DEFINABILITY

there exists some k such that for any strings v € L and v ¢ L, Duplicator
has a winning strategy in the k-round game for (<) on w,v. This winning
strategy for Duplicator with respect to < is then expanded into a winning
strategy for Duplicator in the game with respect to (<, PLUS). This implies
that L ¢ FO(<, PLUS), a contradiction.

7.3 FO(<, TIMES) = FO(<, DIVIDES)

Define the predicate DIVIDES(z,y) to mean that x divides y. It is easy to
see that TIMES can define DIVIDES with the formula

DIVIDES(z,y) <= 32TIMES(z,z,y)

Here we show that DIVIDES itself actually has quite a bit of expres-
sive power, and together with ordering can define TIMES. First, we show
DIVIDES can express simpler predicates like “z is the least common mul-
tiple of z and y”, denoted LCM(x,y,), and “z is the greatest common
divisor of z and y”, denoted GCD(z, y, z)

LCM(z,y,2) = (z|z Aylz AV (z|z' Aylz' = 2 < 2"))
GCD(z,y,2) = (zlzAzlyAVZ' R |z A2 |y — 2’ <2))

The key of our approach to defining TIMES is the fact that if the GCD
of x and y is 1, that is if z and y are relatively prime, then the LCM of x
and y is their product, LCM(z,y, zy).

Theorem 7.3.1 Let 7 be a vocabulary that includes ordering. If DIVIDES €
7 then TIMES is first-order definable. In particular, FO(<,DIVIDES) =
FO(<, TIMES).

Proof Let z,y € n. We wish to express the product zy using DIVIDES
and ordering. First we break x into two parts z; and z5 such that = 2129
and z; is the largest factor of = relatively prime to y.

Claim 7.3.2 21 and z2 are relatively prime.

Proof Suppose p is a prime dividing both 2z; and z2. Either p divides y or
p does not divide y. If p divides y then p cannot divide z; as z; and y are
relatively prime. On the other hand, if p does not divide y then z;p would
be relatively prime to y, contradicting the defininition of 2. |

7.3. FO(<, TIMES) = FO(<, DIVIDES) 37

We also need to check that z, 22 can be so defined.
321 (21]z A GCD(21,y,1) A V21 (21|z A GCD(21,y,1) = 21 < 21))

322(GCD(21, 22,1) ALCM(21, 22, %))

We have now reduced the problem to defining the product z,y. As 27 is
relatively prime to 2o and relatively prime to y, it is also relatively prime
to the product z,y. Thus if we can define z,y, then we can define z;20y as
LCM(z1, 22y).

Now 22 does not necessarily divide y, but because of our definition of
21, every prime divisor of 2z is also a prime divisor of y.

Claim 7.3.3 23 and y + 1 are relatively prime

Proof Assume there exists a prime p > 1 such that p|z, and ply + 1. But
as p is a factor of zy, it is also a factor of y, thus p|y. Then p|(y +1 — y)
which implies that p divides 1, a contradiction. |

The same reasoning can be used to show GCD(z2,y — 1,1). Thus as 22
is relatively prime to y — 1 and y + 1, we can define the products z3(y —1) =
LCM(z2,y — 1) and 22(y + 1) = LCM(22,y + 1). We use these products to
bookend the product zay.

Claim 7.3.4 2y =t <= 2@y—1) <t < z2(y+1) A 2t

Proof = 2(y — 1) < 20y < 22(y + 1) and 22|22y
< Since z3|t, there is some k such that t = z2k. By the other condition,
we have
20(y — 1) < 22k < 22(y + 1).

Assuming z5 is not 0, which could only happen if z = 0, in which case we
would not be here, then

y—1l<k<y+1

Thus k =y, and so t = 20y. |}

38

CHAPTER 7. ARITHMETICAL DEFINABILITY

Chapter 8

Conclusions and Further
Directions

Although very few strict containments are known amongst larger complex-
ity classes, we now know the following strict containments and equivalences
in small extensions of first-order logic:

FO C FO(<) C FO(<,PLUS) C FO(<, TIMES)

FO(<, DIVIDES)
FO(<, BIT)

There are many other combinations we could consider, and also some pred-
icate combinations whose complexities are orthogonal to each other — each
not being able to first-order define the other.

One particularly interesting orthogonal relationship is with ordering.
Ordering has a very special role in descriptive complexity, and is at the
root of some of its deepest problems such as finding a language for order
independent P. One of the most elegant gifts of descriptive complexity
is that we can represent problems by predicates and so not worry about
the particulars of how a problem is encoded. But this also gives rise to
the ‘order mismatch’ when comparing with structural complexity classes.
When inputs are encoded, for example on a Turing Machine, they inevitably
acquire and ordering, simply by their position on the input tape.

Although ordering seems like a very simple relation, its complexity is
actually orthogonal to many more powerful predicates. We have seen that
it cannot be defined by TIMES. We conjecture as well that ordering cannot
be defined by BIT.

In chapter 4, we sketched a general game method for proving inexpress-
ibility results in the hope that this method could be used to separate larger

39

40 CHAPTER 8. CONCLUSIONS AND FURTHER DIRECTIONS

complexity classes. It would be nice to know if there is a limit to how far
this proof method can go in separating complexity classes, for example,
a proof that the game method cannot separate P from NP. It does not
seem like the two techniques we are aware of to prove limits on techniques,
showing that they relativize or are natural, can be directly applied to the
game technique.

Although it is over 50 years old now, the paper of Julia Robinson [Rob49)
is still very much alive. In this thesis we showed that her two main defin-
ability results, that multiplication and successor can define addition, and
that the divisibility relation and successor can define multiplication, also
both hold in the finite case (where ordering replaces successor). In the
same paper, Julia Robinson suggested a further definability problem which
was left open. The problem, now termed Robinson’s problem, is whether
the relatively prime relation and successor can first-order define multiplica-
tion. Later it was shown in the PhD thesis of Alan Woods [Woo081] that a
positive solution to Robinson’s problem is equivalent to the existence of a
k € N such that for all pairs (z,y), if z + ¢ and y + ¢ have the same prime
divisors for all 0 < ¢ < k then x = y. This last statement is a weakening of
a conjecture made by Erdds, now called the Woods-Erdos conjecture.

Determining the expressive power of the relatively prime predicate would
also be informative in elucidating the relationship between three concepts:

e Crane Beach Conjecture: the new conjecture is that the Crane Beach
Conjecture is true of a set of predicates NV iff N cannot count beyond
a constant.

e Jump in Counting: Ts there a set of ‘natural’ predicates N which can
count beyond a constant but which cannot define PLUS and TIMES?

e Gap Between Decidability and Undecidability: For what set of pred-
icates V' is the theory (w,N\') undecidable yet unable to express all
recursively enumerable sets of finite relations over w (that is, unable
to define PLUS and TIMES)

Also in his thesis [Woo81], Woods shows that the theory (w, ’, L) is
undecidable, and that multiplication can be defined with bounded (<, 1)
formulas over w. In fitting with the building body of evidence associating
these ideas, we conjecture that (<, L) can define TIMES on finite struc-
tures, and that (<, L) is false for the Crane Beach Conjecture.

Bibliography

[AF90]

[BIL*01]

[BIS90]

[Bus91]

[CDL]

[Fag74]

[Fag75)

[FSS84]

M. Ajtai and R. Fagin. Reachability is harder for directed than for
undirected finite graphs. The Journal of Symbolic Logic, 55:113—
150, 1990.

D. Barrington, N. Immerman, C. Lauteman, N. Schweikardt, and
D. Thérien. The crane beach conjecture. pages 187-196. LICS
’01, 2001.

David A. Mix Barrington, Neil Immerman, and Howard
Straubing. On uniformity within NC'. Journal of Com-
puter and System Sciences, 41(3):274-306, 1990. Available at

citeseer.nj.nec.com/barrington90uniformity.html.

S. Buss. The graph of multiplication is equivalent to counting.
Available from ftp://euclid.ucsd.edu/pub/sbuss/research,
1991.

A. Chiu, G. Davida, and B. Litow. NC' division. Manuscript,
1999.

Available from the website http://www.cs.jcu.edu.au/ bruce
as /papers/crr00.3.ps.gz.

R. Fagin. Generalized first-order spectra and polynomial-time
recognizable sets. In R. Karp, editor, Complezity of Computation,
SIAM-AMS Proceedings, volume 7, pages 43—-73, 1974.

R. Fagin. Monadic generalized spectra. Zeitschrift fur Mathema-
tische Logik und Grundlagen der Mathematik, 21:89-96, 1975.

M. Furst, J. Saxe, and M. Sipser. Parity, circuits, and the

polynomial-time hierarchy. Mathematical Systems Theory, 17:13—
27, 1984.

41

42

[Hes01]

[Imm82]

[Imm87]

[Imm88]

[Pre29]

[Rob49]

[TMR53]

[Var82]

[Woo81]

BIBLIOGRAPHY

W. Hesse. Division is in uniform TCO0. ICALP 2001: Twenty-
Eighth International Colloquium on Automata, Languages, and
Programming, 2001.

N. Immerman. Relational queries computable in polynomial time.
14th Symposium on Theory of Computation, pages 147-152, 1982.

Neil Immerman. Languages that capture complexity classes.
SIAM Journal of Computing, 16(4):760-778, 1987. available at
citeseer.nj.nec.com/89379.html.

N. Immerman. Nondeterministic space is closed under comple-
mentation. SIAM Journal of Computing, 5:935-938, 1988.

M. Presburger. Uber die vollstindigkeit eines gewissen sys-
tems der arithmetik ganzer zahlen, in welchem die addition als
einzige operation hervortritt. In Comptes-rendus du I Congrés
des mathématiciens des Pays Slaves, pages 92-101 and 395, 1929.

J. Robinson. Definability and decision problems in arithmetic.
The Journal of Symbolic Logic, 14:98-114, 1949.

A. Tarski, A. Mostowski, and R. Robinson. Undecidable Theories.
North-Holland, Amsterdam, 1953.

M. Vardi. Complexity of relational query languages. 14th Sym-
posium on Theory of Computation, pages 137-146, 1982.

A. Woods. Some problems in logic and number theory and their
connections. PhD thesis, University of Manchester, Manchester,
1981.

