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Direct product theorems

e Knowing how to compute f, how can you compute fH fH--- B f7?

e Obvious upper bounds:

— If can compute f with t resources, can compute ®F ,f with kt
resources. If can compute f with success probability 1/2 + €/2, then
succeed on @®F_, f with probability 1/2 + €% /2.

e Question: is this the best one can do?

— Direct sum theorem: Need 2(kt) resources to achieve original

advantage
— Direct product theorem: advantage decreases exponentially



Applications

e Hardness amplification

— Yao's XOR lemma: if circuits of size s err on f with non-negligible
probability, then any circuit of some smaller size s’ < s will have small
advantage over random guessing on ®F_, f.

e Soundness amplification

— Parallel repetition: if Alice and Bob win game G W,ith probability € < 1
then win &k independent games with probability €¥ < e.

e Strong DPT for quantum query complexity of OR function:
[A05, KSWO07] Oracle where NP & BQP /qpoly, time-space tradeoffs for

sorting.



Background

e Shaltiel [SO3] started a systematic study of when direct product theorems
might hold.

e Showed a general counter-example where strong direct product theorem
does not hold.

e Looked at bounds proven by particular method: discrepancy method in
communication complexity.

discy (fPF) = O(discy (f))*/3



Discrepancy

e For a Boolean function f: X xY — {0,1}, let M, be sign matrix of f
M¢[z,y] = (=1)/®¥) . Let P be a probability distribution on entries.

discp(f) = max |ZCT(Mf o P)y| = ||Myo P|c
ze{0,1}1 Xl
ye{0,1}1Y]

o disc(f) = minp ||Mso P||c.

e Discrepancy is one of most general techniques available:

D(f) =z R(f) =z QZ(f) = (1Ogdisi(f)>



Basic Orientation

ldentify a function f(x,y) with its sign matrix
(f D g)(mla L2, Y1, y2) — f(ajla yl) D 9(3727 y2)
Very nice in terms of sign matrices: sign matrix for f © g is My ® M,

Shaltiel: Does general discrepancy obey product theorem?



Results

e Yes!

discp(A)discg(B) < discpgg(A ® B) < 8 discp(A)disco(B)

6%ldisc(A)disc(B) < disc(A ® B) < 8 disc(A)disc(B)

e Taken together this means that for tensor product matrices, a tensor
product distribution is near optimal:

1
ﬁdiSCP@)Q(A ® B) < disc(A® B) < 8 discpgq(A ® B)



Optimality

Discrepancy does not perfectly product

Consider the 2-by-2 Hadamard matrix H (inner product of one bit)
1 1
=l
Uniform distribution, x = y = |1 1], shows disc(H) = 1/2

On the other hand, disc(H®*) = ©(27%/2).



The proof: short answer

e [Linial and Shraibman 06] define a semidefinite programming quantity -

which they show characterizes discrepancy up to a constant factor, using
ideas from [Alon and Naor 06].

e Although not always the case, semidefinite programs tend to behave
nicely under product: [L79, FL92, ..., CSUUO07].

e The semidefinite relaxation of discrepancy does as well.



Outline for rest of talk

e Try to convince you that -, arises very naturally in communication
complexity

e Sketch the proof of the product theorem, and try to convince you this is
what you would do even if you didn't listen to first part

e Further extensions, open problems



Communication complexity

e For deterministic complexity, rank is all you need . . .

— logrk(A) < D(A)
— Log rank conjecture: 3¢: D(A) < (log I‘k(A))E

e As rk(A ® B) = rk(A)rk(B) log rank conjecture would give direct sum
theorem for deterministic communication complexity, up to polynomial
factors.



Bounded-error models

o Approximate rank: rk(A) = ming{rk(B) : |A — B||s < €}.
e For randomized and quantum complexity

-, log Ig<(f1)

Re(A) > Qc(A)

e But these approximate ranks are very hard to work with . . . Borrow ideas
from approximation algorithms.



Relaxation of rank

e Instead of working with rank, work with convex relaxation of rank

e For example, by Cauchy-Schwarz we have

1A,
ANl

<rk(A)

e Not a good complexity measure as can be too uniform.

max |Aouv?||?. < rk(A)

w,v:||ul|=lv]|=1

for sign matrix A.



Also known as . ..

e Duality of spectral norm and trace norm . . .

|All = max (A, B)
B:||Bl[¢+r<1
e means
max [Aowv’||? = max ||Ao Bl
w,vi||ul[=(v[|=1 B:|| B||tr<1
= max |[Ao Bj

Bi||Bli<1



aka . . . Linial and Shraibman’s v,

e Coming from learning theory, Linial and Shraibman define

BA) = min_ r(X)e(Y),

r(X) is largest {5 norm of a row of X, similarly ¢(Y') for column of Y

e By duality of semidefinite programming

Y2 (A) = max | A o uv™||¢

w,v:||ul|=[lv]|=1



Different flavors of -

e For deterministic complexity

A)= _ mi X)e(Y) = A0 Qe
(4 = min r(X)e(Y) = max_ [[4eQl

e For randomized, quantum complexity with entanglement

BA) = L ya BB acry ")

e For unbounded error

0o _ i X)e(Y) = A
5 x,y:{%lﬁéyof( )e(Y) @:||@||tf~r%aff@oAon ° Ql¢r



Product theorem: discpgg(A ® B) < 8 discp(A)disco(B)

e Let's look at discp again:

discp(A) = ||Ao P|l¢

e This is an example of a quadratic program, in general NP-hard to
evaluate.

e In approximation algorithms, great success in looking at semidefinite
relaxations of NP-hard problems.

e Semidefinite programs also tend to behave nicely under product!



Proof: first step

e Semidefinite relaxation of cut-norm studied by [Alon and Naor 06].

e First step: go from 0/1 vectors to +1 vectors. Look at the norm

|A][ow1 = max z' Ay
SU,’yE{—l,l}n

e Simple lemma shows these are related.

IAlle < [[Allco—1 < 4[| Allc



Proof: second step

e Now go to semidefinite relaxation:

|Alloo—1 < max Y A j{u,vy)

UiV .
Juil[=[lvjll=1 *J

e Grothendieck’'s Inequality says

max > A; j(ui,v5) < Kgl|Alloo—

’Uxi,'Uj —
luil|[=llvjl|=1 *J

where 1.67 < Kg < 1.782...



Proof: last step

e Our approximating quantity is exactly the norm dual to vs:

V5 (A) = B:&%§§1<A’ B)

= 1max ZAi,j<u7;,vj>

wi,vj gl [l [ <1

(Z¥

e [hus we have

discp(A) <~5(Ao P) < 4K¢ discp(A)



Connection to XOR games

Let P[x,y] be the probability the verifier asks questions x,y, and
Alz,y] = (—1)7@Y) be the desired response. Proverssend a,b € {—1,1}

trying to achieve ab = Az, y|.

: - A0P|| o
Value of classical game is 1/2 + | Ao 2”00 L

Value of entanglement game is 1/2 + M [Tsirelson80, CHTWO04]

A product theorem for 5 has been shown twice before in the literature
[FL92, CSUUO07]



Product theorem: disc(A ® B) < 8 disc(A)disc(B)

e disc(A) = minp ||[Ao P||¢ |
e (1/4Kg)minpy;(Ao P) <disc(A) <minp~y;(Ao P) I

e Now need to show product theorem for

. \ . V3(Ao P)
Ao P) =
P:||Pﬁrll£,on T2(doP) P:||Pﬁ?£,on (A, Ao P)
= min 75(Q)

Q:QoA>0 (A, Q)



Direct product for disc(A): Last step

e quantity from last slide:

e (@),
Q:Q0A>0 (A, Q)

e Reciprocal looks like v5(A), except for non-negativity restriction I
e Reciprocal equals v5°(A):

C(A) = max ||Ao »= min 7(X)c(Y
) = max_[[40Qly = min r(X)e(Y)
QoA>0 XYoA>1



Direct product for disc(A): Final step

e [Linial and Shraibman 06] 75°(A) < 1/disc(A) < 8 75°

o If Q4,Qp are optimal witnesses for A, B respectively, then
12 (A® B) > [(A® B) o (Qa® QB)ltr = (A0 Qa) ® (Bo Q)|
and Q4 ® Qg agrees in sign everywhere with A ® B

o If A= X,Y4 and B = XYy are optimal factorizations, then

V2 (A® B) < 7(Xa® Xp)e(Ya®Yp) =1r(Xa)c(Ya)r(Xp)c(Yp)



Future directions

e Bounded-error version of v

€ _ : T
Na(d) = min _ max||Bovu

e Lower bounds quantum communication complexity with entanglement
[LS07].  Strong enough to reprove Razborov's optimal results for
symmetric functions.

e Does 75 obey product theorem? Would generalize some results of
[KSWO06]



Composition theorem

e What about functions of the form f(g(x1,y1),9(x2,y2),...,9(Xn,yn))?
e When f = @ lose the tensor product structure . . .

e Recent paper of [Shi and Zhu 07] show some results in this direction—use
bound like 75 on f but need g to be hard.



Open problems

e Optimal Q(n) lower bound for disjointness can be shown by one-sided
version of discrepancy. Does this obey product theorem?

e [Mittal and Szegedy 07] have begun a systematic theory of when a
product theorem holds for a general semidefinite program. All of
Y2, V5, V5o fit in their framework.



