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Direct product theorems

• Knowing how to compute f , how can you compute f ⊕ f ⊕ · · · ⊕ f?

• Obvious upper bounds:

– If can compute f with t resources, can compute ⊕k
i=1f with kt

resources. If can compute f with success probability 1/2 + ε/2, then
succeed on ⊕k

i=1f with probability 1/2 + εk/2.

• Question: is this the best one can do?

– Direct sum theorem: Need Ω(kt) resources to achieve original
advantage

– Direct product theorem: advantage decreases exponentially



Applications

• Hardness amplification

– Yao’s XOR lemma: if circuits of size s err on f with non-negligible
probability, then any circuit of some smaller size s′ < s will have small
advantage over random guessing on ⊕k

i=1f .

• Soundness amplification

– Parallel repetition: if Alice and Bob win game G with probability ε < 1
then win k independent games with probability ε̄k′ < ε.

• Strong DPT for quantum query complexity of OR function:
[A05, KSW07] Oracle where NP 6⊆ BQP/qpoly, time-space tradeoffs for
sorting.



Background

• Shaltiel [S03] started a systematic study of when direct product theorems
might hold.

• Showed a general counter-example where strong direct product theorem
does not hold.

• Looked at bounds proven by particular method: discrepancy method in
communication complexity.

discU(f⊕k) = O(discU(f))k/3



Discrepancy

• For a Boolean function f : X × Y → {0, 1}, let Mf be sign matrix of f
Mf [x, y] = (−1)f(x,y). Let P be a probability distribution on entries.

discP (f) = max
x∈{0,1}|X|

y∈{0,1}|Y |

|xT (Mf ◦ P )y| = ‖Mf ◦ P‖C

• disc(f) = minP ‖Mf ◦ P‖C.

• Discrepancy is one of most general techniques available:

D(f) ≥ Rε(f) ≥ Q∗
ε(f) = Ω

(
log

1
disc(f)

)



Basic Orientation

• Identify a function f(x, y) with its sign matrix

• (f ⊕ g)(x1, x2, y1, y2) = f(x1, y1)⊕ g(x2, y2)

• Very nice in terms of sign matrices: sign matrix for f ⊕ g is Mf ⊗Mg

• Shaltiel: Does general discrepancy obey product theorem?



Results

• Yes!

discP (A)discQ(B) ≤ discP⊗Q(A⊗B) ≤ 8 discP (A)discQ(B)

1
64

disc(A)disc(B) ≤ disc(A⊗B) ≤ 8 disc(A)disc(B)

• Taken together this means that for tensor product matrices, a tensor
product distribution is near optimal:

1
512

discP⊗Q(A⊗B) ≤ disc(A⊗B) ≤ 8 discP⊗Q(A⊗B)



Optimality

• Discrepancy does not perfectly product

• Consider the 2-by-2 Hadamard matrix H (inner product of one bit)

H =
[

1 1
1 −1

]

• Uniform distribution, x = y = [1 1], shows disc(H) = 1/2

• On the other hand, disc(H⊗k) = Θ(2−k/2).



The proof: short answer

• [Linial and Shraibman 06] define a semidefinite programming quantity γ2

which they show characterizes discrepancy up to a constant factor, using
ideas from [Alon and Naor 06].

• Although not always the case, semidefinite programs tend to behave
nicely under product: [L79, FL92, . . . , CSUU07].

• The semidefinite relaxation of discrepancy does as well.



Outline for rest of talk

• Try to convince you that γ2 arises very naturally in communication
complexity

• Sketch the proof of the product theorem, and try to convince you this is
what you would do even if you didn’t listen to first part

• Further extensions, open problems



Communication complexity

• For deterministic complexity, rank is all you need . . .

– log rk(A) ≤ D(A)
– Log rank conjecture: ∃` : D(A) ≤ (log rk(A))`

• As rk(A⊗ B) = rk(A)rk(B) log rank conjecture would give direct sum
theorem for deterministic communication complexity, up to polynomial
factors.



Bounded-error models

• Approximate rank: r̃k(A) = minB{rk(B) : ‖A−B‖∞ ≤ ε}.

• For randomized and quantum complexity

Rε(A) ≥ Qε(A) ≥ log r̃k(A)
2

• But these approximate ranks are very hard to work with . . . Borrow ideas
from approximation algorithms.



Relaxation of rank

• Instead of working with rank, work with convex relaxation of rank

• For example, by Cauchy-Schwarz we have

‖A‖2
tr

‖A‖2
F

≤ rk(A)

• Not a good complexity measure as can be too uniform.

max
u,v:‖u‖=‖v‖=1

‖A ◦ uvT‖2
tr ≤ rk(A)

for sign matrix A.



Also known as . . .

• Duality of spectral norm and trace norm . . .

‖A‖ = max
B:‖B‖tr≤1

〈A,B〉

• means

max
u,v:‖u‖=‖v‖=1

‖A ◦ uvT‖2
tr = max

B:‖B‖tr≤1
‖A ◦B‖tr

= max
B:‖B‖≤1

‖A ◦B‖



aka . . . Linial and Shraibman’s γ2

• Coming from learning theory, Linial and Shraibman define

γ2(A) = min
X,Y :XY =A

r(X)c(Y ),

r(X) is largest `2 norm of a row of X, similarly c(Y ) for column of Y

• By duality of semidefinite programming

γ2(A) = max
u,v:‖u‖=‖v‖=1

‖A ◦ uv∗‖tr



Different flavors of γ2

• For deterministic complexity

γ2(A) = min
X,Y :XY =A

r(X)c(Y ) = max
Q:‖Q‖tr≤1

‖A ◦Q‖tr

• For randomized, quantum complexity with entanglement

γε
2(A) = min

X,Y :1≤XY ◦A≤1+ε
r(X)c(Y )

• For unbounded error

γ∞2 = min
X,Y :1≤XY ◦A

r(X)c(Y ) = max
Q:‖Q‖tr≤1,Q◦A≥0

‖A ◦Q‖tr



Product theorem: discP⊗Q(A⊗B) ≤ 8 discP (A)discQ(B)

• Let’s look at discP again:

discP (A) = ‖A ◦ P‖C

• This is an example of a quadratic program, in general NP-hard to
evaluate.

• In approximation algorithms, great success in looking at semidefinite
relaxations of NP-hard problems.

• Semidefinite programs also tend to behave nicely under product!



Proof: first step

• Semidefinite relaxation of cut-norm studied by [Alon and Naor 06].

• First step: go from 0/1 vectors to ±1 vectors. Look at the norm

‖A‖∞→1 = max
x,y∈{−1,1}n

xTAy

• Simple lemma shows these are related.

‖A‖C ≤ ‖A‖∞→1 ≤ 4‖A‖C



Proof: second step

• Now go to semidefinite relaxation:

‖A‖∞→1 ≤ max
ui,vj

‖ui‖=‖vj‖=1

∑
i,j

Ai,j〈ui, vj〉

• Grothendieck’s Inequality says

max
ui,vj

‖ui‖=‖vj‖=1

∑
i,j

Ai,j〈ui, vj〉 ≤ KG‖A‖∞→1

where 1.67 ≤ KG ≤ 1.782 . . .



Proof: last step

• Our approximating quantity is exactly the norm dual to γ2:

γ∗2(A) = max
B:γ2(B)≤1

〈A,B〉

= max
ui,vj:‖ui‖,‖vj‖≤1

∑
i,j

Ai,j〈ui, vj〉

• Thus we have

discP (A) ≤ γ∗2(A ◦ P ) ≤ 4KG discP (A)



Connection to XOR games

• Let P [x, y] be the probability the verifier asks questions x, y, and
A[x, y] = (−1)f(x,y) be the desired response. Provers send a, b ∈ {−1, 1}
trying to achieve ab = A[x, y].

• Value of classical game is 1/2 + ‖A◦P‖∞→1
2

• Value of entanglement game is 1/2 + γ∗2(A◦P )
2 [Tsirelson80, CHTW04]

• A product theorem for γ∗2 has been shown twice before in the literature
[FL92, CSUU07]



Product theorem: disc(A⊗B) ≤ 8 disc(A)disc(B)

• disc(A) = minP ‖A ◦ P‖C

• (1/4KG) minP γ∗2(A ◦ P ) ≤ disc(A) ≤ minP γ∗2(A ◦ P )

• Now need to show product theorem for

min
P :‖P‖1=1,P≥0

γ∗2(A ◦ P ) = min
P :‖P‖1=1,P≥0

γ∗2(A ◦ P )
〈A,A ◦ P 〉

= min
Q:Q◦A≥0

γ∗2(Q)
〈A,Q〉



Direct product for disc(A): Last step

• quantity from last slide:

min
Q:Q◦A≥0

γ∗2(Q)
〈A,Q〉

• Reciprocal looks like γ2(A), except for non-negativity restriction

• Reciprocal equals γ∞2 (A):

γ∞2 (A) = max
Q:‖Q‖tr≤1

Q◦A≥0

‖A ◦Q‖tr = min
X,Y

XY ◦A≥1

r(X)c(Y )



Direct product for disc(A): Final step

• [Linial and Shraibman 06] γ∞2 (A) ≤ 1/disc(A) ≤ 8 γ∞2

• If QA, QB are optimal witnesses for A,B respectively, then

γ∞2 (A⊗B) ≥ ‖(A⊗B) ◦ (QA ⊗QB)‖tr = ‖(A ◦QA)⊗ (B ◦QB)‖tr

and QA ⊗QB agrees in sign everywhere with A⊗B

• If A = XAYA and B = XBYB are optimal factorizations, then

γ∞2 (A⊗B) ≤ r(XA ⊗XB)c(YA ⊗ YB) = r(XA)c(YA)r(XB)c(YB)



Future directions

• Bounded-error version of γ2

γε
2(A) = min

B:‖A−B‖∞≤ε
max
u,v

‖B ◦ vuT‖tr

• Lower bounds quantum communication complexity with entanglement
[LS07]. Strong enough to reprove Razborov’s optimal results for
symmetric functions.

• Does γε
2 obey product theorem? Would generalize some results of

[KSW06]



Composition theorem

• What about functions of the form f(g(x1, y1), g(x2, y2), . . . , g(xn, yn))?

• When f 6= ⊕ lose the tensor product structure . . .

• Recent paper of [Shi and Zhu 07] show some results in this direction—use
bound like γε

2 on f but need g to be hard.



Open problems

• Optimal Ω(n) lower bound for disjointness can be shown by one-sided
version of discrepancy. Does this obey product theorem?

• [Mittal and Szegedy 07] have begun a systematic theory of when a
product theorem holds for a general semidefinite program. All of
γ2, γ

∗
2 , γ∞2 fit in their framework.


