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Direct product theorems: Why should Google be
interested?

• Say you want to accomplish k independent tasks. . .
improve search algorithm, fight youtube copyright lawsuits, buy some
promising new companies, hire some theory graduate students . . .

• What is the most effective way to distribute your limited resources to
achieve these goals?

• Is it possible to accomplish all of these tasks while spending less than
the sum of the resources required for the individual tasks?
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Direct sum theorems

• Let f, g be Boolean functions. Say you want to compute
h(x1, x2) = (f(x1), g(x2)).

• Obviously can compute f and then compute g. Can you do better?

• Direct sum theorem: To compute h need sum of resources needed for f
and g.

• “The shortest way to do many things is to do only one thing at once” –
Samuel Smiles
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Direct product theorems

• Study behavior of success probability: with obvious algorithm, if can
compute f with success probability p, then succeed on f2(x1, x2) =
(f(x1), f(x2)) with probability p2.

• Direct product theorem: success probability decreases exponentially.
Strong direct product theorem—this holds for fk even with k times the
resources.

• Note: For us, more convenient to investigate h(x1, x2) = f(x1)⊕ g(x2).
By results of [VW07] showing bias of this problem decreases exponentially
suffices to give direct product theorem.
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Applications

• Hardness amplification

– Yao’s XOR lemma: if circuits of size s err on f with non-negligible
probability, then any circuit of some smaller size s′ < s will have small
advantage over random guessing on ⊕k

i=1f .

• Soundness amplification

– Parallel repetition: if Alice and Bob win game G with probability p < 1
then win k independent games with probability p̄k′ < p.

• Time-space tradeoffs: Strong DPT for quantum query complexity of
OR function [Aar05, KSW07] gives time-space tradeoffs for sorting with
quantum computer.
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Background

• Shaltiel [S03] began a systematic study of when strong direct product
theorems might hold—in particular, in the context of communication
complexity.

• Showed a general counter-example where strong direct product theorem
does not hold.

• In light of counter-example, we should look for direct product theorems
under some assumptions—say lower bound is shown by a particular
method.

• Studied discrepancy method in communication complexity



Communication complexity

• Alice is given input x, Bob input y and wish to compute some distributed
function f(x, y).

• In classical case, complexity is number of bits of conversation needed to
output f(x, y) on worst case input.

• Identify f with its communication matrix Mf [x, y] = (−1)f(x,y).

• For functions f, g, notice that the sign matrix of

h(x1, x2) = f(x1)⊕ g(x2)

is simply Mf ⊗Mg
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• Discrepancy is one of most general techniques available:

D(f) ≥ R1/3(f) ≥ Q∗
1/3(f) = Ω

(
log

1
disc(f)

)

• Let Mf [x, y] = (−1)f(x,y) be sign matrix of f . Let P be a probability
distribution on entries.

discP (f) = max
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|xT (Mf ◦ P )y| = ‖Mf ◦ P‖C
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• Discrepancy is one of most general techniques available:

D(f) ≥ R1/3(f) ≥ Q∗
1/3(f) = Ω

(
log

1
disc(f)

)

• Let Mf [x, y] = (−1)f(x,y) be sign matrix of f . Let P be a probability
distribution on entries.

discP (f) = max
x,y∈{0,1}N

|xT (Mf ◦ P )y| = ‖Mf ◦ P‖C

• disc(f) = minP discP (f).
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Results

• [Shaltiel 03] showed discU⊗k(M⊗k
f ) = O(discU(Mf))k/3

Open question: does product theorem hold for general discrepancy?

• For any probability distributions P,Q:

discP⊗Q(A⊗B) ≤ 8 discP (A)discQ(B)

• Product theorem also holds for disc(A) = minP discP (A):

1
64

disc(A)disc(B) ≤ disc(A⊗B) ≤ 8 disc(A)disc(B)
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Optimality

• Discrepancy does not perfectly product

• Consider the 2-by-2 Hadamard matrix H (inner product of one bit)

H =
[

1 1
1 −1

]

• Uniform distribution, x = y = [1 1], shows disc(H) = 1/2

• On the other hand, disc(H⊗k) = Θ(2−k/2).
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Some consequences

• Strong direct product theorem for randomized lower bounds shown by
the discrepancy method

• Unconditional direct sum theorem for weakly unbounded-error protocols:
randomized model where

– Pr[R[x, y] = f(x, y)] > 1/2 for all x, y
– If always succeed with probability ≥ 1/2 + ε, cost is number of bits

communicated + log(1/ε).



Proof ideas

• Let’s look at discP again:

discP (A) = max
x,y∈{0,1}N

|xT (Mf ◦ P )y|

• This is an example of a quadratic program, in general NP-hard to
evaluate.

• In approximation algorithms, great success in looking at semidefinite
relaxations of NP-hard problems.

• Semidefinite programs also tend to behave nicely under product!



Enter γ2 norm

• Looking at the natural semidefinite relaxation of cut norm one arrives at
the γ2 norm, or rather its dual [AN06, LS08].

(1/4KG) γ∗2(A ◦ P ) ≤ discP (A) ≤ γ∗2(A ◦ P )

where 1.67 < KG < 1.783 is Grothendieck’s constant.

• Furthermore, for disc(A) = minP discP (A) we have [LS08]

γ∞2 (A) ≤ 1
disc(A)

≤ 4KG γ∞2 (A)

where γ∞2 (A) = minA′:1≤A◦A′ γ2(A).
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• Thus for our results suffices to show

γ∗2(A⊗B) = γ∗2(A)γ∗2(B)

γ∞2 (A⊗B) = γ∞2 (A)γ∞2 (B)

• This is done in usual fashion—look at semidefinite formulations of γ∗2 , γ∞2 ,
and use min and max formulations to show upper and lower inequalities,
respectively.
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• Thus for our results suffices to show

γ∗2(A⊗B) = γ∗2(A)γ∗2(B)

γ∞2 (A⊗B) = γ∞2 (A)γ∞2 (B)

• This is done in usual fashion—look at semidefinite formulations of γ∗2 , γ∞2 ,
and use min and max formulations to show upper and lower inequalities,
respectively.

• First item actually shown for perfect parallel repetition for two-prover
XOR games with entanglement in Complexity last year [CSUU07]
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Open problems

• We have shown product theorem for γ∞2 . How about bounded-error
version γα

2 (A) = minA′:1≤A◦A′≤α γ2(A′)?

• Optimal Ω(n) lower bound for disjointness can be shown by corruption
bound or one-sided version of discrepancy. Does this obey product
theorem? Known under product distributions [BPSW05].

• Build on the general theory developed by [MS07, LM08] for classifying
when semidefinite programs perfectly product.

• More general composition theorems for operations other than tensor
product. Recent work of [SZ07] has some results in this direction.


