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Direct product theorems: Why should Gogle be
interested?

e Say you want to accomplish k independent tasks. . .
improve search algorithm, fight youtube copyright lawsuits, buy some
promising new companies, hire some theory graduate students . . .

e What is the most effective way to distribute your limited resources to
achieve these goals?

e |s it possible to accomplish all of these tasks while spending less than
the sum of the resources required for the individual tasks?
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Direct sum theorems

Let f, g be Boolean functions. Say you want to compute

h(z1,22) = (f(71), 9(x2)).

Obviously can compute f and then compute ¢g. Can you do better?

Direct sum theorem: To compute h need sum of resources needed for f
and g.

“The shortest way to do many things is to do only one thing at once” —
Samuel Smiles
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Direct product theorems

e Study behavior of success probability: with obvious algorithm, if can
compute f with success probability p, then succeed on f?(zq,22) =

(f(x1), f(x2)) with probability p.

e Direct product theorem: success probability decreases exponentially.

Strong direct product theorem—this holds for f* even with k times the
resources.

e Note: For us, more convenient to investigate h(x1,x2) = f(x1) @ g(x2).
By results of [VWO07] showing bias of this problem decreases exponentially
suffices to give direct product theorem.
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Applications

e Hardness amplification

— Yao's XOR lemma: if circuits of size s err on f with non-negligible
probability, then any circuit of some smaller size s’ < s will have small
advantage over random guessing on ®F_, f.

e Soundness amplification

— Parallel repetition: if Alice and Bob win game G Wi/th probability p < 1
then win k independent games with probability p* < p.

e Time-space tradeoffs: Strong DPT for quantum query complexity of
OR function [Aar05, KSWO07] gives time-space tradeoffs for sorting with
quantum computer.
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Background

Shaltiel [S03] began a systematic study of when strong direct product
theorems might hold—in particular, in the context of communication
complexity.

Showed a general counter-example where strong direct product theorem
does not hold.

In light of counter-example, we should look for direct product theorems
under some assumptions—say lower bound is shown by a particular

method.

Studied discrepancy method in communication complexity



Communication complexity

Alice is given input x, Bob input y and wish to compute some distributed
function f(z,y).

In classical case, complexity is number of bits of conversation needed to
output f(x,y) on worst case input.

Identify f with its communication matrix M¢[x,y] = (—1)/ (@),
For functions f, g, notice that the sign matrix of

h(z1,z2) = f(z1) ® g(x2)

is simply My ® M,
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Discrepancy

e Discrepancy is one of most general techniques available:

D(f) =z Riy3(f) =z Q1/5(f) = Q (10g disi(f))

o Let M;[z,y] = (—1)/®¥) be sign matrix of f. Let P be a probability
distribution on entries.

disc —  max 2 (Myso Pyl = ||Mso P
p(f) x,ye{o,uN‘ (Myo P)y| = ||Myo Pllc

® dlSC(f) = minp diSCp(f).
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Results

e [Shaltiel 03] showed diSCU(g)k(M}X)k) — O(dich(Mf))k/3
Open question: does product theorem hold for general discrepancy?

e For any probability distributions P, Q):

discpg(A ® B) < 8 discp(A)disco(B)

e Product theorem also holds for disc(A) = minp discp(A):

1
6—4disc(A)disc(B) < disc(A ® B) < 8 disc(A)disc(B)
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Optimality

Discrepancy does not perfectly product

Consider the 2-by-2 Hadamard matrix H (inner product of one bit)
1 1
=l
Uniform distribution, x = y = |1 1], shows disc(H) = 1/2

On the other hand, disc(H®*) = ©(27%/2).
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Some consequences

e Strong direct product theorem for randomized lower bounds shown by
the discrepancy method

e Unconditional direct sum theorem for weakly unbounded-error protocols:
randomized model where

— Pr[R[z,y] = f(z,y)] > 1/2 for all x,y
— If always succeed with probability > 1/2 + €, cost is number of bits
communicated + log(1/e).



Proof ideas

Let's look at discp again:

discp(A) = max |z7(Mso P)y|
:U,yE{O,l}N

This is an example of a quadratic program, in general NP-hard to
evaluate.

In approximation algorithms, great success in looking at semidefinite
relaxations of NP-hard problems.

Semidefinite programs also tend to behave nicely under product!



Enter 2 norm

e Looking at the natural semidefinite relaxation of cut norm one arrives at
the 75 norm, or rather its dual [AN06, LS08|.

(1/4Kqg) v5(Ao P) < discp(A) < v5(Ao P)
where 1.67 < Kg < 1.783 is Grothendieck's constant.

e Furthermore, for disc(A) = minp discp(A) we have [LSO8]

Yo (A) <

< 4K~ v (A
~ disc(A) T ¢ 72 (4)

where 75°(A) = minar.1 <404 72(A4).
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¥ (A® B)  =73(A)v(B)
Vo (A® B) =73°(A)v3°(B)

e Thisis done in usual fashion—look at semidefinite formulations of 5, 5°,

and use min and max formulations to show upper and lower inequalities,
respectively.

e First item actually shown for perfect parallel repetition for two-prover
XOR games with entanglement in Complexity last year [CSUUQ7]
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Open problems

We have shown product theorem for v5°. How about bounded-error
version 75 (A) = mingr.1<aoar<a v2(A4’)7?

Optimal 2(n) lower bound for disjointness can be shown by corruption
bound or one-sided version of discrepancy. Does this obey product
theorem? Known under product distributions [BPSWO05].

Build on the general theory developed by [MS07, LMO08| for classifying
when semidefinite programs perfectly product.

More general composition theorems for operations other than tensor
product. Recent work of [SZ07] has some results in this direction.



