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A brief history of disjointness

Set intersection: Alice holds z € {0,1}", Bob y € {0,1}".
share a common element?

Deterministic communication complexity n bits
Nondeterministic complexity is O(logn).
Randomized complexity O(n) [KS87, Raz92]

Quantum complexity ©(y/n) [lower Raz03, upper AA03]

Do they



Number-on-the-forehead model

k-players, input x1,...,x;. Player ¢ knows everything but z;.
Large overlap in information makes showing lower bounds difficult.

Lower bounds have application to powerful models like circuit complexity
and complexity of proof systems.

Best lower bounds are of the form n/2*. Bound of n/22* for generalized
inner product function ®(x1 A ... A xz) [BNS89].
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Disjointness in the number-on-the-forehead model

e Best lower bound Q(lgﬂl), and best upper bound O(kn/2%) [lower Tes02,

BPSWO06, upper Gro94].

e Kushilevitz and Nisan: “The only technique from two-party complexity
that generalizes to multiparty complexity is the discrepancy method.”
For disjointness, discrepancy can only show bounds of O(logn).

o Researchers have studied restricted models—bound of n'/3 for three
players where first player speaks and dies [BPSWO06]. Bound of n'/* /k*
in one-way model [VWO07].
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Our results

e \We show disjointness requires randomized communication

0 <n1/<kk+1>)
22

in the general k-party number-on-the-forehead model.

e Chattopadhyay and Ada independently obtained similar results

e Separates multiparty communication complexity versions of NP and BPP
for up to k = loglogn — O(logloglogn) many players.



Application to proof systems

e As linear and semidefinite programming are some of the most
sophisticated algorithms we have developed, natural to see how they
fare on NP-complete problems.

e One way to formalize this is through proof complexity: for example
cutting planes, Lovasz-Schrijver proof systems.



Application to proof systems

e As linear and semidefinite programming are some of the most
sophisticated algorithms we have developed, natural to see how they
fare on NP-complete problems.

e One way to formalize this is through proof complexity: for example
cutting planes, Lovasz-Schrijver proof systems.

e Beame, Pitassi, and Segerlind show that lower bounds on NOF

disjointness imply lower bounds for a very general class of proof systems,
including the above [BPS06].



Tree-like semantically entailed proof systems

Say trying to show a CNF formula ¢ is not satisfiable

Refutation is a binary tree with nodes labeled by degree d polynomial
inequalities and derives 0 > 1.

Axioms are clauses of ¢, represented as inequalities.

Derivation rule is Boolean soundness: if every 0/1 assignment which
satisfies f and g also satisfies h, then one may conclude h from f,g.



Example: (aVb)A(—aV —b)A(—aVb)A(aV —b)

a+b>\ 7b> 1a+b>\ 7b>1
a(1-a)+b(1- b a(1 a+b1 b
a(1-b) +b1 -a) ba+1 a
a(1 b)+b(1 -a) >=1 ab+(1 a)(1 -b) >= 1

1>=2



Application to proof systems

e Via [BPS06] and our results on disjointness, we obtain subexponential
lower bounds on the size of tree-like degree d semantically entailed proofs
needed to refute certain CNFs for any constant d.

e Examples: cutting planes (d = 1), Lovasz-Schrijver systems (d = 2).

e Exponential bounds known for (general) cutting planes [Pud97] and
tree-like Lovdsz-Schrijver systems [KI06], but rely heavily on specific
properties of these proof systems. Even for d = 2 no nontrivial bounds
were known on semantically entailed proof systems.
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Discrepancy method: two-party

e Recall for two players, letting Afz, y] = (—1)/®¥).

discp(A)

where C' is a combinatorial

= max |z’ (Ao P)y|
a:E{O,l}'Xl
ye{0,1}1"]

= max [(40 P,C)

rectangle.



Cylinder intersections

Analog of combinatorial rectangle in multiparty case is a cylinder
intersection

Action of player 7 does not depend on x;. Described by a function
¢'(xy1,...,x)) invariant under setting of x;.

Cylinder intersection C' = ¢(x1,..., 1) - ¢*(x1,...,T) where each
¢" is a 0/1 valued function which does not depend on ;.

A successful c-bit NOF protocol decomposes communication tensor into
2¢° many monochromatic cylinder intersections.



Discrepancy method: multi-party

e In the multiparty case, Alxi,...,x;] = (—1)7@1%k) becomes
communication tensor

discp(A) = max (Ao P, C)]
cylinder intersection

e Function is hard if discrepancy is small: R;/3(A) = €2(1/disc(A)) where
disc(A) = minp discp(A).
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Rewriting discrepancy

1 _ i (A, Ao P)
disc(A) El(P)fl oo discp(A)
(A, Ao P)|
= max

P:P>0 discp(A)



Rewriting discrepancy

1 _ i (A, Ao P)
disc(A) El(P)fl oo discp(A)
_ (A, Ao P)|
~ pirSo discp(A)
{4, Q)

= max
Q:A40Q>0 1*(Q)

where we define discp(A) = pu*(A o P).
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Norm based approach

Dropping restriction on sign of () arrive exactly at definition of dual

norm: - ‘<A7 Q>|
=)

This remains a lower bound on communication complexity—If A
correlates with ) and (@) is hard, then A must be hard as well.

For two parties, 1 norm is equal to 5 norm, up to constant factors.

Difficult part of showing lower bounds is how to choose Q.



Pattern matrix method

Pattern matrix method of [She07, She08], and generalization to
multiparty case by [Cha07], reduces high dimensional task of choosing ()
to a one-dimensional task.

Focus on a structured subtensor A of disjointness OR(x1 A ... A xg).

Choose @) to be similarly structured subtensor of g(z1 A ... A xg). This
structure gives (A, Q) ~ (OR, q).

Degree/Discrepancy theorem: if ¢ has pure high degree, u*(Q) (or
discrepancy) will be small.



Pattern matrix method

Pattern matrix method of [She07, She08], and generalization to
multiparty case by [Cha07], reduces high dimensional task of choosing ()
to a one-dimensional task.

Focus on a structured subtensor A of disjointness OR(x1 A ... A xg).

Choose @) to be similarly structured subtensor of g(z1 A ... A xg). This
structure gives (A, Q) ~ (OR, q).

Degree/Discrepancy theorem: if ¢ has pure high degree, u*(Q) (or
discrepancy) will be small. Use the original (and still only) technique of
[BNS92| to upper bound multiparty discrepancy.



Conclusion

e Beame and Huynh-Ngoc recently show a bound of nQ(l/k)/QO(k) on
complexity of an AC? function. By reduction they get non-trivial bounds
on disjointness for up to (logn)'/3 players.

e They use a stronger property of the function, going beyond just its
approximate degree.

e Follow-up work [LSS08] extends -5 to the multiparty case to lower bound
multiparty quantum communication. We show that k-party p and ~s
are related up to multiplicative factor 2% and can thus transfer bounds
shown here and by discrepancy method to the quantum case.



