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Circuit Complexity

e A million dollar question: Show an explicit function which requires superpoly-
nomial size circuits!

e For functions in NP the best circuit lower bound we know is 5n — o(n)
[LRO1, IM02]

e The smallest complexity class we know to contain a function requiring super-
polynomial size circuits is MAEXP! [BFT98]



Formula Size

Weakening of the circuit model—a formula is a binary tree with internal nodes
labelled by AND, OR and leaves labelled by literals. The size of a formula is
its number of leaves.

PARITY has formula size 8(n?) [Khr71].

Showing superpolynomial formula size lower bounds for a function in NP
would imply NP # NC!.

The best lower bound for a function in NP is n3—°(1) [Has98].



An Aside: Lower Bound Philosophy

e Let’'slook at our job as computer scientists from the point of view of computer
scientists.

e How difficult is the problem of proving lower bounds?

e We will consider a lower bound technique efficient if it can be computed in
time polynomial in the size of the truth table of f.



Karchmer-Wigderson Game [KW88]

Elegant characterization of formula size in terms of a communication game.

For a Boolean function f, let X = f~1(0) and ¥ = f~1(1). Consider

Ry={(x,y,i):x€X,y €Y, x; # i}

The game is then the following: Alice is given x € X, Bob is given y € Y and
they wish to find i such that (x,y,i) € Ry.

Karchmer—Wigderson Thm: The number of leaves in a best communication
protocol for R ¢ equals the formula size of f.



Communication complexity of relations
RCX XY XxZ

Communication protocol is a binary tree:

Alice’s nodes labelled by a function:

a, : X — {0,1}

Similarly, Bob’s nodes labelled

b, : Y —{0,1}
VNN

Leaves labelled by elements 2z € Z.

Denote by C*'(R) the number of leaves

@ @ @ @ in a best protocol for R.



Proof by picture: C*(R;) < L(f).

@ General idea: Alice speaks at AND nodes
and Bob speaks at OR nodes.

Initially, f(x) # f(y) and we maintain this

disagreement on subformulas as we move

/\ /\ down the tree.
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Proof by picture: C*(R;) < L(f).

First we define Alice’s action at the top node:
If z does not satisty the left subformula,
then Alice sends the bit 0;

otherwise she sends the bit 1.

OREORONIRD



Proof by picture: C*(R;) < L(f).

Say that x does not satisty the lett

(1/ subformula.

NN
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Proof by picture: C*(R;) < L(f).

Now Bob speaks at the OR gate:

(i/ If y satisfies the left subformula, Bob says 0.
Otherwise, he says 1.

NN
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Proof by picture: C*(R;) < L(f).

Now Bob speaks at the OR gate:

(i/ If y satisfies the left subformula, Bob says 0.
Otherwise, he says 1.

=3
NN
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Proof by picture: C*(R;) < L(f).

We continue down the tree in a similar fashion,

(1/ maintaining the property that  and y

take different values on subformulas.

1 Eventually, we reach a literal ¢; such that
/\ /\ li(x) # 4;(y) and so x and y differ on bit 3.
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Communication Complexity and the Rectangle Bound
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A rectangle S is monochromatic
if there exists z such that
(z,y,2) € Sforall (z,y) €S.

A successful protocol partitions
X XY into monochromatic

rectangles.



Communication Complexity and the Rectangle Bound
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Rectangle Bound

We denote by CD(R) the size of a smallest partition of X X Y into monochro-
matic (with respect to R) rectangles. By the argument above, CP(R) < CF(R).

The rectangle bound is a purely combinatorial quantity.

We can still hope to prove larger lower bounds by focusing on the rectangle

bound:

CP(R) < CP(R) < 2(logC”(R))?

Major drawback—it is NP hard to compute.



Approximating the rectangle bound

e We will see that a measure on rectangles satisfying two properties, subaddi-
tivity and monotonicity, can be used to lower bound the rectangle bound.

e Several previous methods fit into this framework, including the rank method
of Razborov [Raz90], and a probability on rectangles method (called B in
Kushilevitz and Nisan).

e We add a new method within this framework based on the spectral norm.



An example: the rank method of Razborov

We know that tk(A + B) < rk(A) +rk(B) for any two matrices A,B. Thus if ® is
an optimal monochromatic rectangle partition of R ¢, then
k(A)

<cP < .
mjx maxge rk(AR) — ¢ (Rf> <L{f)

We want a method, however, that doesn’t depend on knowing the optimal partition!



An example: the rank method of Razborov

We now use the monotonicity property. As the rectangles are monochromatic,
each rectangle R is a subset of D; = {(x,y) : x € X,y € Y,x; # y;}, for some
i € [n]. For this i we have tk(Ag) < rk(A o D;). Thus

rk(A)

<CP(Ry) <L(f).
HleX max,-rk(AoDi) =C (Rf> <L)

Razborov uses this method to show superpolynomial monotone formula size lower
bounds. He also shows, however, it is trivial for regular formula size [Raz92].



Our main lemma: spectral horm squared is subadditive

e Spectral norm has several equivalent formulations. We will use:

1A]]5 = max ul Av|
v :ulr=[v[p=1

e Main Lemma: Let A be a matrix over X x Y and ® be a partition of X x Y into
rectangles. Then

2 2
lAllz < )[Rl
RER

e Note that it is not true in general that ||A +B||% < ||A||%+ ||B||%.



Proof of main lemma

Fix unit vectors u,v which maximize |uTAv|. By definition,

T T
lAll = Ju"Av[=[u" ( ) Ap)V]
RER,
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Applying the lemma

From the lemma it follows that if X is an optimal rectangle partition of R ¢, then

A 2
A _ o,
A maXReKHARHz

Ry).

We want a method, however, that doesn’t depend on knowing the optimal partition!



Monotonicity

the rectangles in ® are monochromatic, thus each rectangle is a subset of
D;={(x,y) :x€ X,y €Y, x; #y;}, forsome i € [n].

If A is nonnegative, then ||Ag||2 < ||A o Dj|»
Thus we obtain

A 2
o B o
A maxiHAioDin

R¢) <L(f).

We now have a bound which can be computed in time polynomial in the truth
table of f



The quantum adversary method emerges

Define

A
sumPI( f) = max 1All2
A max; ||A;o Dl

e We have shown that sumPIz(f) < CD(Rf) < L(f)

e It turns out that sumPI(f) is a lower bound on the quantum query complexity
of 1 [BSS03]

e The quantity sumPI(f) has emerged over several years [Amb02, Amb03,
BSS03, LM04] in the context of quantum query complexity, and has many
nice properties and equivalent formulations [SS05].



More on the quantum adversary method

e The name sumPI comes from the following equivalent min max formulation

1
sumPI(f) = min max —
P xeX.yeY } vty V/ Px(0)py(i)

e Using both the max min and min max formulations appropriately makes it easy
to give exact characterizations of sumPI( f).

e For example, one can show sumPI( f) behaves very well under composition:
sumPI( fX) = (sumPI(f))* for any Boolean function f [Amb03, LLS05].



Khrapchenko’s Method

e Define a bipartite graph, with left hand side a subset of £ ~1(0) and right hand
side £~1(1).

e Connect x,y with an edge if they have Hamming distance 1

e Khrapchenko’s bound is the product of the average degree of the left hand
side with the average degree on the right hand side.



Generalizing Khrapchenko’s Method

— po(x)p1(y)

<CcP(Ry) <L
P0o,P1,9 X,y qz(x,y) - ( f> — (f)

Define the matrix Alx,y] = q(x,y)/v/po(x)p1(y)-

Then ||A|[2 > 1.

Each matrix A o D; has at most one entry in each row and column.

Thus [|A o Dj|| < maxyyq(x,y)//po(x)p1(y)-



Open problems

Is quantum query complexity squared a lower bound on formula size?

How about approximate polynomial degree?

Are the rectangle bound and formula size polynomially related?

How large is the rectangle bound for a random function?



