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Circuit Complexity

e Million dollar question: Show an explicit function which re-
quires superpolynomial size circuits

e For functions in NP the best circuit lower bound we know is
5n — o(n) [Lachish and Raz 01, Iwama and Morizumi 02]

e [ he smallest complexity class we know to contain a function
requiring superpolynomial size circuits is MAEXP [Buhrman,
Fortnow, and Thierauf 98]



Formula Size

Weakening of the circuit model—a formula is a binary tree
with internal nodes labelled by AND, OR and leaves labelled
by literals. The size of a formula, denoted L(f), is its number
of leaves.

PARITY has formula size 8(n?) [Khrapchenko 71].

The best lower bound for a function in NP is n3—o(1)
[Hastad 98].

Showing superpolynomial formula size lower bounds for a
function in NP would imply NP %= NC1I.



Two Step Transformation

e We transform the problem of proving lower bounds on for-
mula size in two steps:

— First, we use the exact characterization of formula size in
terms of a communication game [Karchmer and
Wigderson 88]

— We then lower bound the well known *“rectangle bound”
from communication complexity



Karchmer—Wigderson Game [KW88]

Elegant characterization of formula size in terms of a com-
munication game.

For a Boolean function f, let X = f~1(0) and Y = r~1(1).
Consider Ry = {(z,y,i) iz € X, y €Y, x; F y;}

The game is then the following: Alice is given z € X, Bob is
given y € Y and they wish to find i such that (z,y,7) € Ry.

Karchmer—Wigderson Thm: The number of leaves in a best
communication protocol for Ry equals the formula size of f.



Communication complexity of relations
RCX XY xZ

Communication protocol is a binary tree:

Alice’s nodes labelled by a function:
a, : X — 40,1}

Similarly, Bob’s nodes labelled
b, Y — {0,1}

NN

Leaves labelled by elements z € Z.

Denote by C*(R) the number of leaves

@ @ @ @ in a best protocol for R.



Proof by picture: CP(R;) <L(f).

@ General idea: Alice speaks at AND nodes
and Bob speaks at OR nodes.

[nitially, f(x) # f(y) and we maintain this

disagreement on subformulas as we move

A A down the tree.

DREORONOIRD



Proof by picture: CP(R;) <L(f).

First we define Alice’s action at the top node:

If = does not satisfy the left subformula,
then Alice sends the bit 0

NN

DREORONOIRD

otherwise she sends the bit 1.



Proof by picture: CP(R;) <L(f).

Say that x does not satisty the left

(:/ subformula.

NN

DREORONOIRD



Proof by picture: CP(R;) <L(f).

Now Bob speaks at the OR gate:

(:/ If y satisfies the left subformula, Bob says 0.
Otherwise, he says 1.

NN

DREORONOIRD



Proof by picture: CP(R;) <L(f).

Now Bob speaks at the OR gate:

(:/ If y satisfies the left subformula, Bob says 0.
Otherwise, he says 1.

=3
NN

DREORONOIRD



Proof by picture: CP(R;) <L(f).

We continue down the tree in a similar fashion,

(:/ maintaining the property that x and y

take different values on subformulas.

1 Eventually, we reach a literal ¢; such that
A A li(x) # ¢;(y) and so x and y differ on bit 3.

DREORONOIRD
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Communication Complexity and the Rectangle
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Bound
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Bob
Y
OO]_ A rectangle S is monochromatic
O]_OO 01 1 if there exists z such that
0001 0000 (z,y,2) € Sforall (x,y) € S.
0101
1111 101 A successful protocol partitions

X XY into monochromatic

110 1000 rectangles.
1001
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Rectangle Bound

e We denote by CP(R) the size of a smallest partition of X xY
into monochromatic (with respect to R) rectangles. By the
argument above, CP(R) < CP(R).

e \We can still hope to prove large lower bounds by focusing on
the rectangle bound:

CD(R) < CP(R) < 2(Iog CP(R))?

e Being a purely combinatorial quantity, the rectangle bound
is often easier to think about. On the other hand, it is in
general NP hard to compute.



Approximating the rectangle bound

e If a size measure (of matrices) is subadditive on rectangles,
then we can get a bound of the form:

size(everythin
number of rectangles > — ( Y 9) :
size(largest rectangle)

e Many communication complexity bounds fit within this schema
including rectangle area, or more generally probability mass,
and matrix rank method of Razborov [Raz90].

e \We add a new method within this framework based on the
spectral norm.



Our main lemma: spectral norm squared is
subadditive

e Spectral norm has several equivalent formulations. We use:

|A]| = max lul Av|
uv |ul[=([v]|=1

e Main Lemma: Let A be a matrix over X xY and R be a
partition of X x Y into rectangles. Then

JAIZ < > Il4RlI%
RER

e Note that while |A+ B|| < ||A|| 4+ ||B]||, for any A, B it is not
true in general that ||A 4+ B||? < ||A|]? + || B||?.



Proof of main lemma

Fix unit vectors u,v which maximize |u! Av|. By definition,

Al = Ju" Av| = [ (Y Ag)v
RER
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Proof of main lemma

Fix unit vectors u,v which maximize |u! Av|. By definition,

T T
1A = [uTAv] = [LI(Y Ap)ol
ReER
< ) lul Apol
RER
< Y 1Agl lugll vzl
ReER
2 2 2
< ¢ S ARIZ TS ugl?lvgl
RER RER

= | > ll4gl*

RER



Applying the lemma

From the lemma it follows that if R is an optimal rectangle
partition of Rf, then

A 2
max 1Al 5 < CD(Rf).
A#0 maxger || AR
We want a method, however, that doesn’'t depend on knowing

the optimal partition.




Monotonicity

e the rectangles in R are monochromatic, thus each rectangle
is a subset of D; = {(x,y) : z € X,y € Y,x; # y;}, for some
i € [n].

e If A is nonnegative, then ||Ag|| < ||A o D,

e [ hus we obtain

1A D
max < CY(Ry¢) < L(Y).
A>0 max; ||A4; o Di||2 — ( f) < L(f)




An example: PARITY

Consider a 2"~ 1 x 2n—1 matrix A with rows indexed by strings
of even parity, columns with strings of odd parity.

Let A[xz,y] = 1 if (x,y) have Hamming distance 1, and O
otherwise.

For the all 1 vector u we have vl Au = n2"~1, thus ||A| > n.

Each submatrix Ao D; is identity matrix, thus ||Ao D;|| = 1.



The quantum adversary method emerges

Define

A
adv(f) = max IA]
A>0 maxX; HAz O DZH

e We have shown that adv?(f) < CP(Ry) < L(f)



The quantum adversary method emerges

Define

A
adv(f) = max IA]
A>0 max; || A; o Dy

e We have shown that adv?(f) < CP(Ry) < L(f)

e It turns out that adv(f) is a lower bound on the quantum
query complexity of f [Barnum, Saks, and Szegedy, 03]



More on the quantum adversary method

e The quantity adv(f) emerged over several years [Ambainis
02, Amb03, BSSO03, Laplante and Magniez 04] in the context
of quantum query complexity. Its many formulations were
shown equivalent by [Spalek and Szegedy 05].

e It further follows from [SS05] that adv(f) can be computed
in time polynomial in the size of the truth table of f, by
reduction to semidefinite programming.

e Like some other bounds arising from semidefinite program-
ming, the adversary method behaves very nicely under com-
position: in fact, adv(f*) = (adv(f))* for any Boolean func-
tion f [Amb03, LLSO5].



Formula size

Rectangle bound

Linear programming bound (Adversary method)?
KKN95]

Koutsoupias Hastad

Khrapchenko



Open problems

Is quantum query complexity squared a lower bound on for-
mula size?

Is approximate polynomial degree squared a lower bound on
formula size?

How does the linear programming bound of [Karchmer,
Kushilevitz, and Nisan 95] relate to the adversary method?

Are the rectangle bound and formula size polynomially
related?



