Language Compression and Pseudorandom Generators

Harry Buhrman Troy Lee
CWI and University of Amsterdam

Harry. Buhrman@cuwi.nl Troy. Lee@cwi.nl

Abstract

The language compression problem asks for succinct
descriptions of the strings in o language A such
that the strings can be efficiently recovered from
their description when given a membership oracle
for A. We study randomized and nondeterministic
decompression schemes and investigate how close we
can get to the information theoretic lower bound of
log ||A="|| for the description length of strings of
length n.

Using nondeterminism alone, we can achieve the
information theoretic lower bound up to an additive
term of O((+y/log||A="|| + logn)logn); using both
nondeterminism and randomness, we can make do
with an excess term of O(log®n). With randomness
alone, we show a lower bound of n — log||A="|| —
O(logn) on the description length of strings in A of
length n, and a lower bound of 2 -log ||A="|| — O(1)
on the length of any program that distinguishes a
giwen string of length n in A from any other string.
The latter lower bound is tight up to an additive
term of O(logn).

The key ingredient for our upper bounds is the
relativizable hardness versus randomness tradeoffs
based on the Nisan-Wigderson pseudorandom gen-
erator construction.

1. Introduction

Data compression pervades computer science — both
theory and practice. For a given language A, one
would like to devise an efficient scheme that allows
one to represent strings in A using few bits. De-
pending on the context, efficiency can refer to the
compression and/or the decompression procedures.
In this paper, we only worry about the efficiency
of the decompression. We study generic schemes in
which every string in A can be efficiently printed

*Partially supported by NSF Career award CCR-0133693.

Dieter van Melkebeek*
University of Wisconsin-Madison
dieter@cs.wisc.edu

from its compressed form given access to a mem-
bership oracle for A, and we shoot for compression
lengths that are as close as possible to the informa-
tion theoretic lower bound. A standard diagonal-
ization argument shows that we cannot realize that
goal using deterministic schemes. We investigate
schemes that use randomness and/or nondetermin-
ism for the decompression.

On the positive side, we exhibit nondeterminis-
tic schemes that achieve a compression ratio which
asymptotically reaches the information theoretic
lower bound. The key idea is the use of relativiz-
able hardness versus randomness tradeoffs to ob-
tain short descriptions of strings with respect to
an oracle. In order to get our nearly optimal re-
sults, we exploit recent progress on these tradeoffs
in the information theoretic context of extractors,
and translate it back to the computational setting
of pseudorandom generators. If we allow the de-
compression algorithm to use randomness as well
as nondeterminism, we can realize a compression
that is only a negligible additive term away from
the information theoretic lower bound. On the neg-
ative side, we extend the standard diagonalization
result to generating schemes that use randomness
only. We also show that randomness alone cannot
achieve a compression ratio better than twice the
information theoretic optimum even if the describ-
ing program is not required to generate the string
but only to distinguish it from all other strings.

1.1. Language Compression Problem

Kolmogorov Complexity was originally developed as
a way to measure the amount of randomness in a
string by considering the length of a shortest pro-
gram which prints the string. Far beyond this initial
purpose it has become an important tool in com-
plexity theory, witnessing applications in many ar-
eas [11]. Almost all of these applications at some



point make use of the following basic theorem: For
any recursively enumerable set A and all z € A of
length n,

C(z) <log|lA7"|| + O(log n). (1)

This is because z can be described by its index in
the enumeration of A=".

For certain applications, particularly in the area
of derandomization, it would be useful to have an
analogue of this theorem when resource bounds are
placed on the program which reconstructs a string
from its description. A prime example of such an
application is Sipser’s original proof that BPP is
in the polynomial hierarchy [17]. Sipser defined a
relaxation of printing complexity called distinguish-
ing complexity. The distinguishing complexity of a
string z, denoted CD(x), is the length of a shortest
polynomial time program which on input y accepts
if and only if y = x. Sipser shows there is an advice
string s of length polynomial in n, and a polynomial
time bound p(n) such that for all x € A=",

CDP4(z|s) < log ||A="|| + O(logn).

In fact, Sipser argues that most advice strings s of
the appropriate length work for all x € A=".

While this theorem is essentially optimal in
terms of program length, it has the drawback of re-
quiring a polynomial sized advice string. Buhrman
and Fortnow [3] show how to eliminate this advice
string at the expense of adding a factor of 2 to the
program size.

Theorem 1 There is a polynomial p(n) such that
for any set A and for all z € A=,

CDP4(z) < 2log||A="|| + O(logn).

Furthermore, there is a program that achieves the
latter bound and only queries the oracle A on its in-
put, rejecting immediately if the answer is negative.

Buhrman, Laplante, and Miltersen [4] demon-
strate a set A with ||A|| = 2%(™ such that the fac-
tor of 2 in the description length is necessary. Thus,
Theorem 1 is essentially optimal for the determinis-
tic distinguishing version of the language compres-
sion problem. The authors of [4] further ask if the
factor of 2 is also necessary for the nondetermin-
istic variant of distinguishing complexity, that is
the length of a shortest nondeterministic polyno-
mial time program which accepts £ € A=" and only
x when given oracle access to A.

1.2. Our Results

We answer this question and show that the factor
of 2 is not necessary. In fact, we show that we can
asymptotically achieve the optimal factor of 1:

Theorem 2 There is a polynomial p(n) such that
for any set A and for all x € A=",

CNP4(z) < log||A="(|+O((v/1og[[A="[|+log n) log ).

Furthermore, there is a program that achieves the
latter bound and only queries the oracle at length n,
rejecting immediately if an answer is negative.

The notation CN?*4(z) in Theorem 2 refers to the
length of a shortest nondeterministic program that
runs in time p(|z|) and, when given oracle access to
A, outputs x on every accepting computation path,
of which there is at least one. Note that the distinc-
tion between distinguishing complexity and printing
complexity disappears in a nondeterministic context
since the printing program can exploit its nondeter-
minism to guess the unique input accepted by the
distinguishing program. In particular, CN essen-
tially coincides with nondeterministic distinguishing
complexity.

Although the bound in Theorem 2 is asymptot-
ically optimal, the excess term of O((\/||A="|| +
logn)logn) is larger than one might hope. By al-
lowing the printing program to use randomness as
well as nondeterminism, we can reduce the excess
term to O(log®n). The printing procedure can be
cast as an Arthur-Merlin game — Merlin can help
Arthur to produce the correct string = with high
probability by answering a question Arthur asks
and, no matter what Merlin does, he cannot trick
Arthur into outputting a string different from x ex-
cept with small probability. We use the notation
CAMPA(z) for the description length of a shortest
such Arthur-Merlin protocol for  that runs in time
p(|z|) and in which Arthur has oracle access to A.

Theorem 3 There is a polynomial p(n) such that
for any set A and for all x € A=",

CAMPA(z) < log ||A="|| + O(log® n).

Furthermore, there is a program that achieves the
latter bound and only queries the oracle at length n,
rejecting immediately if an answer is negative.

Finally, we address the question whether ran-
domness alone, without nondeterminism, is able
to achieve the same compression ratio. We show
that this is not the case in a strong sense. We



show that there are sets A such that the length
of efficient randomized generating programs for any
string £ € A" cannot even reach the same ball-

park as the information theoretic lower bound of
log [|A="]].

Theorem 4 For any integers n, k, and t such
that 0 < k < n, there exists a set A such that
log||A="|| = k and for every x € A=",

CBPY(z) > n —log||A="|| — logt — 5.

Here, CBPt’A(:c) denotes the minimum length of a
randomized program p that runs in time ¢ and out-
puts z with probability at least 2/3 when given or-
acle access to A.

Even for the distinguishing version of random-
ized complexity, CBPD, the length of an optimal
program can be up to a factor of 2 away from the
information theoretic lower bound:

Theorem 5 There exist positive constants ci, cs,
and c3 such that for any integers n, k, and t sat-
isfying k < cin — cologt there exists a set A with
log ||A="|| = k and a string x € A=™ such that

CBPDY4(z) > 2log||A="|| — ¢s.

Note that Theorem 1 implies that CBPDP*4(z) <
2k 4+ O(logn) for some polynomial p and every
x € A=". Theorem 5 shows that the upper bound
on CBPD implied by Theorem 1 is tight up to an
additive term of O(logn).

Theorem 5 contrasts Sipser’s result on CD com-
plexity, where he showed that a random piece of
information does allow us to achieve the optimal
compression ratio. The distinguishing program
in Sipser’s result depends on the random choice,
though, whereas CBPD complexity is based on a
fixed program that can flip coins.

We mention that Theorem 2 has recently been
applied in [10] to show a relativized world where
symmetry of information fails for nondeterministic
distinguishing complexity in a strong way. They
also show, using Theorem 3 that a weak form of
symmetry of information holds for nondeterminis-
tic distinguishing complexity with randomness.

1.3. Our Technique

We use the hardness versus randomness tradeoffs
based on the Nisan-Wigderson pseudorandom gen-
erator construction [12]. Given the truth-table z €
{0,1}™ of a Boolean function, these tradeoffs define
a pseudorandom generator G, : {0,1}¢ — {0,1}™

with seed length d much less than the output length
m that has the following property: If the pseudoran-
dom distribution G;(Uy) lands in a set B C {0,1}™
with significantly different probability than the uni-
form distribution U, over {0,1}™, then z has a
succinct description with respect to B and can be
efficiently recovered from that description given or-
acle access to B [8].

We apply the hardness versus randomness trade-
offs in the following way. Consider a set A and let
k = log||A="||. If we set B equal to the union of
the range of G, over all z € A=" and set m to be
slightly larger than k + d then, for every string x in
A=", the pseudorandom distribution G (U,) lands
in B with 100% certainty whereas the uniform dis-
tribution U, lands in B with significantly smaller
probability. We conclude that every £ € A=™ can
be efficiently constructed from a succinct descrip-
tion given oracle access to B. Moreover, the set B
can be decided efficiently by a nondeterministic ma-
chine that has oracle access to A. This allows us to
replace the oracle queries to B by nondeterminism
and oracle queries to A, which is what we need for
Theorem 2.

A similar (but simpler) reconstructive argument
underlies the analysis of recent extractor construc-
tions a la Trevisan (see [15] for an excellent survey).
Trevisan [22] viewed the above hardness versus ran-
domness tradeoffs as a transformation

TR : {0,1}" x {0,1}¢ — {0,1}™

that takes two inputs, namely a truth-table x €
{0,1}" and a seed y € {0,1}¢, and outputs the
pseudorandom string G (y). He observed that TR
defines an extractor: For every distribution X on
{0,1}™ with sufficient minentropy k, the distribu-
tion TR(X, Uy) behaves very similar to the uniform
distribution U,, with respect to every possible set
B. The argument goes as follows: For a given set
B, let us call a string = € {0,1}" “bad” if TR (z, Uy)
and U,, land in B with probabilities that are more
than € apart (where € is some parameter). Since bad
strings & with respect to B can be reconstructed
from a short description, say of length £(m,€), and
each individual string x has probability at most 2%
in a source of minentropy k, the extracted distribu-
tion lands in B with the same probability as the
uniform distribution up to an error term of no more
than e+2¢™) =k So_in order to extract as much of
the minentropy of the source as possible, one needs
to minimize the description length £(m,€). The lat-
ter is exactly what we need for our compression re-
sult of Theorem 2. Thus, our goals run parallel



to those for constructing “reconstructive” extrac-
tors that extract almost all of the minentropy of
the source. We employ similar tools (such as weak
designs [14]) but need to deal with a few additional
complications:

e In the extractor setting, it is sufficient to ar-
gue that a nonnegligible fraction of the bad
strings = has a short description. In partic-
ular, the averaging argument in the standard
analysis only shows that a fraction ©(e/m) of
the bad strings x has a short description. This
slack in the analysis increases the error bound
for the extractor only from e + 2(me)—k to
e+ 0(m/e)24m<) =k In our setting, however,
we cannot afford to miss any string because
we need a short description for every string in
A=" with respect to a single oracle B.

e As a result, our descriptions need to include
more information than in the extractor set-
ting. There are two main components in
the description, namely one depending on the
weak designs underlying the Nisan-Wigderson
pseudorandom generator, and one specifying
O(m) random bits used in the averaging argu-
ment. The latter component is the one which
is needed in our setting but not in the extrac-
tor context. Balancing the two contributions
optimally leads to the descriptions of length
m + O(y/mlogn) from Theorem 2. By allow-
ing the describing program not only the power
of nondeterminism but also the power of ran-
domness, we can, in some sense, mimic the
averaging argument from the extractor setting
and eliminate the need for the second compo-
nent. This results in the shorter descriptions
of length about m used in Theorem 3.

e Qur descriptions need to be efficient — an ele-
ment x € A=" can be computed in polynomial
time from its description and access to an ora-
cle for B. This implies a return from the infor-
mation theoretic setting to the computational
setting which formed the starting point for the
development of Trevisan-like extractors. Our
efficiency requirements are not as strict as in
the pseudorandom generator context, though,
where each bit of z can be reconstructed in
randomized time (logn)®®). We can afford
reconstruction times of the order n®® but the
process typically needs to be deterministic.

In the above argument, the Nisan-Wigderson
construction may be replaced by the recent pseu-
dorandom generators or reconstructive extractors

based on multivariate polynomials [21, 16]. How-
ever, although the latter lead to optimal hardness
versus randomness tradeoffs in some sense [23], they
yield worse parameters than the Nisan-Wigderson
construction in our context.

1.4. Organization

In Section 2., we provide some background on Kol-
mogorov complexity, and formally define the Kol-
mogorov measures we use. We also describe two key
ingredients in the recent extractor constructions,
namely combinatorial designs and error-correcting
codes. Section 3. contains our key Lemma, the
Compression Lemma, which translates some of the
recent progress on extractors back to the pseudo-
random generator setting. We use the Compression
Lemma to derive our upper bounds for nondeter-
ministic schemes in Section 4., and for schemes that
use both nondeterminism and randomness in Sec-
tion 5.. Finally, in Section 6., we present our lower
bound for schemes that only use randomness.

2. Preliminaries

We use standard complexity theoretic notation as in
[2] and [13]. For background and notation in Kol-
mogorov complexity we refer the reader to [11]. We
use |z| to denote the length of a string z, and ||A||
to denote the cardinality of a set A. By A=" we
mean the intersection of A with the set of strings of
length n. All logarithms are base 2.

2.1. Kolmogorov Complexity

The theory of Kolmogorov Complexity begins with
a universal Turing machine U, which is able to sim-
ulate the running of any other Turing machine with
only a constant additive factor overhead in program
length. For the theory of resource-bounded Kol-
mogorov complexity, we need further that the uni-
versal machine U be able to do this efficiently. This
can be done by the well known simulation of Hennie
and Stearns [7]. Thus we now fix such a universal
machine U.

For a fully time constructible function ¢ satisfy-
ing t(n) > n, the time ¢ bounded printing complex-
ity is defined as

C*(z) = min{|p| : U(p) = z in at most ¢(|z|) steps}.
p
Note that the running time depends not on the

length of the input p, but rather the length of the
output x.



We consider a randomized version of printing
complexity, CBP, defined as follows:

Definition 6 Let U be a universal machine. Then
CBP!(x) is the length of a shortest program p such
that

1. Pryeq0,1y:[U(p,7) outputs z] > 2/3

2. U(p,r) runs in
{0,1}*
We define a nondeterministic version of printing

complexity, CN, in terms of single valued nondeter-
ministic functions (see [1] for definition).

< t(|z|) steps for allr €

Definition 7 Let U, be a universal nondetermin-
istic machine. Then CN'(z) is defined as the length
of a shortest program p such that

1. U,(p) has at least one accepting path
2. Up(p) outputs x on every accepting path

3. Un(p) runs in < t(|z|) steps.

Finally, we investigate decompression algo-
rithms that make use of both nondeterminism and
randomness. For this we define a version of printing
complexity based on the complexity class AM:

Definition 8 Let U,, be a universal nondeterminis-
tic machine. The CAM'(z) is the length of a short-
est program p such that

1. Pryeq0,13t[Un(p,7) accepts, and all accepting
paths output z] > 2/3

2. Un(p,r) runs in < t(|z|) steps.

Sipser defined a relaxation of printing complex-
ity called distinguishing complexity. The time ¢ dis-
tinguishing complexity of z, denoted CD*(z), is the
length of a shortest program which runs in time ¢
and accepts only the string .

Nondeterministic ~ distinguishing complexity,
CND, was originally defined in [3]. It can be
seen that the measures CND and CN essentially
coincide, up to additive logarithmic terms. One
direction is obvious. To see CN!TOUzD(z) <
CND(z) + O(log|z|): if p is a nondeterministic
distinguishing program for z, a nondeterministic
machine given p and |z| can guess a string of length
|z| which is accepted by p and output this string. By
the nature of p, the new nondeterministic machine
has at least one accepting computation path and
outputs x on every accepting computation path. As
Un(p,x) runs in time ¢, the whole procedure will

take time at most ¢t + O(|z|). Thus in the sequel we
will refer only to CN. A similar argument holds for
CAM and its distinguishing complexity analogue.

If we only allow randomness, however, it is no
longer clear if distinguishing complexity and print-
ing complexity coincide. As our results concern-
ing randomized decompression algorithms are lower
bounds, we give the definition here for randomized
distinguishing complexity which allows for stronger
statements.

Definition 9 Let U be a universal machine. Then
CBPD' () is the length of a shortest program p such
that

1. Prrcqony:[U(p,z,7) = 1] > 2/3
2. Procioy[Up,2,7) =0] > 2/3 for all z # x

3. Up,z,7r) runs in <

{0,1}"

All of the Kolmogorov measures we introduced
can be relativized by giving the universal machine
access to an oracle A. We mention the oracle as a
superscript after the measure acronym.

t steps for all z €

2.2. Combinatorial Designs

A key ingredient of the Nisan-Wigderson generator
is a collection of sets with small pairwise intersec-
tion. Following [12], a set system & = Si,...,S, C
[d] is called a (¢, p) design if for all i, ||S;|| = £ and
for all ¢ # j the intersection ||S; N .S;|| <logp .

In [14] it is observed that a weaker property on
the set system S suffices for the construction of the
Nisan-Wigderson generator. Namely, the quantity
essentially used in the analysis of the generator is
a bound on 3, _; 211985l Set systems with this
sum bounded by p- (m —1) for all 1 are called (¢, p)
weak designs. Unlike the case with designs, there
exist weak designs where the universe size d does
not depend on the number of sets m.

For our purposes, we need to draw another dis-
tinction in design terminology. We need a bound
on Y. ; 21505l in terms of i. Such designs were
already constructed in [14] but went unnamed. As
the distinction will be important later, we give them
their own name, referring to them as uniform weak
designs.

Definition 10 Let S = (S1,853,-..,Sm) be a fam-
ily of sets where for all i, S; C [d] and ||S;|| = £.

1. 8 is a weak (£, p) design if 3, 21575l <
p-(m—1) for alli.



2. S is o wuniform weak (4,p)
3 i 209055 < p - (i = 1) for all i.

design if

The following lemma is proved in [14]:

Lemma 11 For every £,m and p = p(ﬁ m) > 1
there ezists a set system S = (S1,S52,...,5m) C [d]
constructible in poly(m,d) time, with either of the
following properties:

1. Sis a weak (£,1) design with d = O(£*logm).

2. S is a uniform weak (£,p) design with d =
O(£?/ log p).

2.3. Error-Correcting Codes

The benefits of composing the Nisan-Wigderson
generator with a good list-decodable code were
demonstrated in [22, 19]. We will use a concate-
nation of a Reed-Solomon code with an Hadamard
code as first considered in [9], building on [18].

Lemma 12 For every integer n > 0 and positive
0 = §(n), there is a code LDC,, 5 : {0,1}™ — {0, 1}"
where i = poly(n/d) with the following properties:

1. LDC,, 5 can be evaluated in time poly(n/J).

2. Given any string § € {0,1}", the list of all
strings x € {0,1}" such that & = LDC,, 5(x)
and §j agree in at least a 1/2+§ fraction of the
positions can be generated in time poly(n/d).

Although combinatorial list decoding bounds would
suffice for our main theorems, algorithmic list de-
coding allows us to state a stronger form of the
Compression Lemma (Lemma 14).

Lemma 13 Let LDC, s be as above and £ =
LDC, s(x). For every § = d&(n) there is a time
bound t = poly(n/d) such that for any § € {0,1}"
which agrees with & on a 1/2 + § fraction of posi-
tions,

C(zl§) < C**(8) + O(log(n/9)).

Proof: With Ct/2(8) + O(log n) bits we can describe
d, n, and the code LDC,, 5 being used. Given g, n, 4,
we can print the poly(n/d) codewords which agree
with § on more than a 1/2+ ¢ fraction of positions.
By further specifying the index i of Z in this list
we can identify Z and decode it to print z. This
index i can be given with O(log(n/J)) bits. As
LDC,, s is efficiently list decodable there is a func-
tion ¢ = poly(n/d) bounding the running time of
the above procedure. m|

3. Compression Lemma

In this section, we translate some of the recent
progress on extractors back into the pseudorandom
generator setting, resulting in the main tool for our
upper bound results, the Compression Lemma. We
first describe the function underlying Trevisan’s and
later extractors, hereafter referred to as Trevisan’s
function.

Let P : {0,1}* — {0,1} be any Boolean func-
tion, and let S = (Si, ..., Sn) be a collection of sub-
sets of [d] where ||S;|| = £. For a string y € {0, 1}¢
let y|s, be the string in {0, 1}¢ obtained by project-
ing y onto the coordinates specified by S;. Then the
Nisan-Wigderson generator NW p is defined as

P(yls..)-

Given an input length n, an output length m, a
quality parameter § = §(m), and a design parame-
ter p = p(m) > 1, we define the following function
after Trevisan. Let LDC,, s be as in Lemma 12 and
let £ = log#i. For u € {0,1}", we view LDC(u)
as a Boolean function @ : {0,1}¢ — {0,1}. Let
S be a (£,p) uniform weak design. The function
TRs,, - {0,1}" x {0,1}% — {0,1}™ is defined as

NWs.a(y)

NWs p(y) = P(yls,) - -

TRs,p(u,y) = = (yls,) -~ ayls,.)-

Note that while n, m are arbitrary, we need to take
the auxiliary input length d so as to satisfy the con-
ditions of the uniform weak design.

The property of Trevisan’s function that is cru-
cial for the recent extractor constructions and for
our results is the following lemma. It is a refinement
of similar statements shown in [12, 22, 14], where
the result was stated for circuit size in [12] and
(nonuniform) description size in [22, 14]. The new
feature of our version of the lemma is the combina-
tion of completeness, succinctness, and efficiency of
the descriptions: every “bad” string with respect to
B has a very succinct description from which it can
be efficiently recovered given oracle access to B.

Lemma 14 (Compression Lemma) Let B
{0,1}™ — {0,1}. Given e = €(m) > 0, let 6 = €/m.
If

| Pr[B(TRs,,(u, Ug) = 1)] = Pr[B(Un) = 1]| > ¢

then for a time bound t = poly(n/e), we have
CHB(u) < p-m +d + CY2(€) + O(log(m/e)).

Furthermore, there is a program that achieves the
latter bound and only makes nonadaptive queries to
B.



Proof: We follow the by now standard proof as in
[12, 22, 14]. The idea is to use the distinction from
the uniform distribution that can be seen with B
to find a bit of the output of TR which can be pre-
dicted with advantage — with this advantage we can
then approximate % and give u a short printing pro-
gram using Lemma 13.

Finding a bit of the output which can be pre-
dicted with advantage can be done using the hybrid
argument of Goldwasser and Micali [6]. We define
m + 1 distributions, Dy, ..., D,,, where the first i
bits of D; are distributed according to the first ¢
bits of TR (u,Uy4), and the last m — ¢ bits of D;
are distributed according to the last m — ¢ bits of
U,,. Thus note that Dy is distributed as U,, and
D,, is distributed as TR(u,Uy). As |Pr[B(Dy,)] —
Pr[B(Dy)]| > €, for some i it must be the case that
| Pr[B(D;)] — Pr[B(D;_1)]| > €/m. For convenience
we remove the absolute value sign by choosing by €
{0,1} such that Pr[B'(D;)] — Pr[B'(D;-1)] > ¢/m,
where B'(z) = by ® B(x).

Writing the distributions D;_1, D; out explicitly,
we now have:

Pry [B'(i(yls,) -y

------

Br [B'(a(yls, ) - -~y

Sic)U(Yls )rier - -Tm)] —

Sic)TiTig1 - --Tm)] > €/m

By an averaging argument, we can fix the bits of
y outside of S;, and fix r;41,. .., to some values
Cit1,---,Cm, While preserving the above difference.
Renaming y|s, as z, we note that x varies uniformly
over {0,1}¢, while d(yls,) for j # 4, is now a func-
tion 4, which depends only on ||.S; N S;|| bits of .
That is,

Pry;  [B'(@1(2) - bi—1(2)W(@)Cit1 -+ Cm)]
- Plg[B'(ﬂl () G;-1(x)beig1 - -em)] > €/m
Let F(z,b) = 41(x)---G;_1(x)bciy1 - - - ¢y Our

program to approximate % does the following. On
input z,b it evaluates B'(F(x,b)) and outputs b if
this evaluates to 1 and 1 — b otherwise. It follows
from the above argument that there is a setting of
b to by € {0,1} such that this program will agree
with @(z) on more than a 1/2 + ¢/m fraction of
inputs . The running time of the program will
be 200 = 70 = poly(n/e). Also note that the
queries to B’ are nonadaptive.

To optimize the description size of the above
program, it will be useful to separate its contribu-
tions into three parts:

1. the index %, the bits bp,b; and O(logm) bits
to make the entire description prefix free.

2. the contribution from the seed length, that is
the d — £ bits fixed outside of z.

3. the setting of the bits c¢;y1,...,cn and de-
scription of the functions @y, ..., %;_1-

Clearly the first item costs O(logm) bits and the
second at most d. We now focus on item three.

Each function 4; is a function on ||S; N .S;|| bits,
thus we can completely specify it by its truth table
with 219056l bits. Hence we can describe all the
functions ..., ;1 with ;) 215050 bits, by
concatenating their truth functions. We can com-
pute the set system S in polynomial time and given
the value of ¢, we can compute the sizes of ||.S; N.S;||
and uniquely decode each function %;. Thus as S is
a (£, p) uniform weak design, we can describe all the
functions 4y, ..., 4;—1 in p- (i —1) bits. Now adding
m — 4 bits to describe c;y1,..., ¢y, We see that item
(3) will cost less than p- (m — 1) bits.

Putting these three items together, we conclude
there is a string § which agrees with 4 on a1/2+¢/m
fraction of positions and with CPB(§) < p-m +d+
O(logm). Now applying Lemma 13, we obtain the
statement of the lemma. O

Substituting the uniform weak design parame-
ters from Lemma 11 into the Compression Lemma,
and optimizing with respect to p, we find the min-
imum is achieved when p =1+ £//m. For future
reference, we record this in the following corollary.

Corollary 15 Let B,¢,d be as in Lemma 14, and
let p=1+4£/\/m. If

| Pr[B(TRs,,(u, Ug) = 1)] = Pr[B(Uy,) = 1]| > €
then for a time bound t = poly(n/e), we have
CtB(u) < m + C¥%(e) + O(v/mlog(n/e)).

Furthermore, there is a program that achieves the
latter bound and only makes nonadaptive queries to
B.

4. Language Compression By
Nondeterminism

In this section, we exhibit the power of nondeter-
minism in the context of the language compression
problem. We show that Trevisan’s function leads to
compression close to the information-theoretic lower



bound such that the compressed string can be re-
covered from its description by an efficient nonde-
terministic program that has oracle access to the
containing language A.

The proof is an application of the Compression
Lemma. In order to give short CN programs relative
to A, it suffices to find a set B such that:

e Queries to B can be efficiently answered with
an oracle for A and nondeterminism.

e For any © € A, the distribution TR(z,Uy)
lands in B with significantly different prob-
ability than the uniform distribution U,,.

Letting B be the set containing all strings of the
form TR(z,e) where x ranges over A and e over
all seeds of the appropriate length d, the first item
will be satisfied. By taking the output length to
be slightly larger than log || A|| + d, that is taking it
to be “too long”, we can also ensure that the sec-
ond item is satisfied. We say “too long” as for this
setting of m, Trevisan’s function will not be an ex-
tractor for sources of min-entropy log||A||, see also
[20]. We now go through the details.

Proof: (of Theorem 2) Fix n and let k = log||4="||.
Let TRs,, : {0,1}"x{0,1}% — {0,1}™ be Trevisan’s
function with m = k + d + 1. The parameters 4, p
will be fixed later.

Define B C {0,1}™ to be the image of Ax {0, 1}¢
under the function TR. That is, B = {y : 3z €
A,3e: TR(z,e) = y}.

By the choice of m it is clear that Pr[B(Up,)] <
1/2. For any element z € A, however,
Pr[B(TR(z,Uq4))] = 1. Thus applying Lemma 14
with € = 1/2 and p = 1+£/v/k we obtain CP5(z) <
(14+£/VE)(k+d+1)+d+0(logn). As £ = O(logn)
and d = O(vVklogn) with this choice of p, simplify-
ing gives CPP(z) < k + O((vVk + logn) logn).

We now show how an oracle for B can be re-
placed by a nondeterministic program with an ora-
cle for A. By Lemma 14 we may assume that the
queries to B are nonadaptive. It is clear the “yes”
answers of the oracle B can be answered nondeter-
ministically with an oracle for A. As the queries to
B are nonadaptive, by additionally telling the pro-
gram the number q of yes answers, the program can
guess the ¢ element subset of the queries which are
“yes” answers and verify them. On any path where
the incorrect g element subset has been guessed, at
least one “yes” answer will not be verified and thus
this path will reject. The description of ¢ will only
increase the program size by O(logn) bits. m|

The positive use of the oracle in Theorem 2 also
allows us to state the following corollary about the
CN complexity of strings from an NP language.

Corollary 16 For any set A € NP there is a poly-
nomial p(n) such that for oll x € A=",

CN?(z) < log ||[A="||+O0((\/log || A="||+logn) log n).

Proof: Consider the nondeterministic program with
oracle access to A given by Theorem 2. Replace
the oracle queries by guessing a membership witness
and verifying it, rejecting whenever the verification
fails. This gives us the nondeterministic generating
program we need. O

5. Language Compression By
Nondeterminism and Ran-
domness

In this section, we show that if we allow the decom-
pression algorithm both the power of nondetermin-
ism and randomness, then we can reduce the excess
in the description length over the information the-
oretic lower bound from O((vk + logn)logn) to
O(log® n).

In the proof of the Compression Lemma, we in-
cluded as part of the description of u € A a setting
of the random bits ¢;41, ..., ¢, fixed after position
i. Including a setting of these bits in our descrip-
tion seems wasteful — the averaging argument of
Lemma 14 shows that a §(e/m) fraction of all m —i
bit strings would work equally well to describe w.
In spite of this, we do not see how to avoid spec-
ifying them with nondeterminism only. However,
if we allow randomization in our nondeterministic
programs, or more precisely, if we consider Arthur-
Merlin generating programs, then we can replace
giving a fixed setting of random bits after position
i, by sampling over a polynomial number of possi-
ble settings of these bits. The main benefit of not
including these bits is that now, as in the extractor
setting, we can use weak designs instead of uniform
weak designs, and by the first part of Lemma 11,
use designs with the optimal parameter p = 1.

One difficulty we need to address is that the
number of positive oracle calls to the oracle B from
Section 4. depends on the sequence of m — ¢ ran-
dom bits ¢;41,¢Ci42,--.,¢n chosen. In the proof of
Theorem 2, we included that number in the de-
scription of elements from A because this allowed
us to replace oracle calls to B by oracle calls to A.



When Arthur randomly picks s(n) = poly(n) such
sequences 71,72, . ..,Ts, we cannot include the num-
ber of positive oracle calls to B for every possible
choice of r in the description. Instead, we include
the average number of acceptances a over all pos-
sible values of r. With high probability, the total
number of acceptances for the strings rq,...,r; will
be within a bounded range of s - a. If the total
number of acceptances for the strings ry,...,r; is
indeed within this range, then Merlin will have lim-
ited leeway in his choice of demonstrating particular
acceptances. Hence we can show that a nonnegligi-
ble fraction of rq,...,rs will give approximations to
1, or else we will catch Merlin cheating. The leeway
Merlin has can lead to approximations of encodings
0 different from 4. However, only a small number
of strings ¢ can occur with probability comparable
to that of & or better. We can thus specify 4 by
distinguishing it from the other high likelihood en-
codings ¥ with a small additional number of bits by
the method of Theorem 1.

Proof: (of Theorem 3) We follow the proof of Theo-
rem 2. Fix n and let k¥ = log||A="||. Because of the
averaging argument, we will need to correct from
more errors in the list decodable code and now take
0 = 1/8m. We will use Trevisan’s function where
the underlying set system S is a (£,1) weak design.
Thus let TR, , : {0,1}" x {0,1}¢ — {0,1}™ be Tre-
visan’s function with m = k+d+1. As the universe
size d for weak designs depends on m, the equation
m = k + d + 1 needs to be solved in terms of m.
By Lemma 11, there are (¢,1) weak designs with
d = O(?logm) = O(log’n) and thus there is a
solution to m = k + d + 1 with m < k + O(log® n).
As in the previous proof, we let the set B C
{0,1}™ be the image of 4 x {0, 1} under the func-
tion TR. By the choice of m, for any u € A=",

Pr[B(TR(u, Uy))] — Pr[B(Up)] > 1/2.

By the hybrid argument, there is an i € [m], and a
setting of the bits of y outside of S; such that

[B(in(2) - - - i (2)a(2)r)] -

[B(ay(z) -~ ;1 (z)br)] > 1/2m.

Pro.cronen
re{0,13ym—i

Pr 2€{0,134,b

re{0,1}m—?

For convenience in what follows, let F'(z,b,7) =
'111 (.CL') e ﬁi_l(m)br.

Consider the following approach of approximat-
ing 4: On input z, pick a random b € {0,1} and
r € {0,1}™ % and compute B(F(z,b,r)); if this
evaluates to 1, then output b, otherwise output 1—b.
Let gy(z,7) be the function computing this oper-
ation. From equation (2) it can be shown that

Pryprlt(z) = go(z,7)] > 1/2 4+ 1/2m. For ease
of explanation, we fix b to a value b; € {0,1} which
preserves this prediction advantage. Arthur cannot
compute the function gy(z,r) himself as he needs
Merlin to demonstrate witnesses for acceptance in
B. We now show how to approximate the compu-
tation of gy(z,r) with an Arthur-Merlin protocol.

We say that r gives a a-approximation to @ if
Pr,[gs, (z,r) = 4(x)] > a. For fixed r, we identify
9, (z,r) with the string zp, » where 2, » has bit by
in position z if and only if g, (z,r) = 1. For con-
venience we assume without loss of generality that
b1 = 1 and drop the subscript. Note that with this
choice the number of ones in z, is the number of
strings x for which B accepts 41 (z) - - - 4;—1(x)byr.
With w(z) we denote the number of ones in a string
z.

Arthur randomly selects strings r1,...,r,, each
of length m —1, for a polynomial s = s(n). Whereas
in the proof of Theorem 2 we included in the descrip-
tion the number of acceptances by B for a particular
setting of bits ¢;y1,. . ., ¢y, we now include the aver-
age a = 2i~™ >z 96, (z,7) number of acceptances
over all r € {0,1}™% To limit Merlin’s freedom in
providing these acceptances, we want the number
of acceptances by B over the strings ry,...,r, to be
close to the expected s - a.

The next claim shows that with high probabil-
ity the strings r1,...,rs; will satisfy our require-
ments. The proof follows from standard probabilis-
tic bounds and is given in the appendix.

Claim 17 For any v = y(m,n) > 0, there exists
s = O(n%/~?) such that with probability at least 3/4
over Arthur’s choice of r1,...,rs the following two
things will simultaneously happen:

1. A 1/8m fraction of r1,...,7s will give  + 7
approzimations to G.

2. The total number of acceptances by B over the
strings 1, ...,rs will be within vs of the ez-
pected. That is,

> wie) - sal < .

j=1

After choosing the strings rq,...,7s, Arthur re-
quests Merlin to provide sa@ — sy many witnesses for
acceptances in B. Arthur verifies these witnesses
and rejects if any of them fail. From the accep-
tances provided by Merlin, Arthur constructs the
strings z,.,...,2, , where position 2 of the string



z; has a one if and only if Merlin provided a wit-
ness for B(F(z,bi,r;)) = 1. We now show that,
with high probability, no matter which acceptances
Merlin chooses to demonstrate, at least a 1/16m
fraction of 2, , ...,z will give 3 + g approxima-
tions of 4. The proof is straightforward and is given
in the appendix.

Claim 18 Ifrq,...,7s satisfy the two conditions of
the previous claim with v = n/256m?2, then for any
demonstration of acceptances by Merlin at least a
1/16m fraction of 2, ,...,z. will be 3 + 5 ap-
prozximations to .

Now putting these claims together, and taking s
to be a sufficiently large polynomial, say s = w(m?),
we have that with probability 3/4 over Arthur’s
choice of ry,...,75, at least a 1/16m fraction of
these settings will give 7 + = approximations to
@. A particular r; can give a  + g approximation
to at most the number of codewords that agree with
it on a fraction at least £ + g of the positions. By
Lemma 12, this number is bounded by a polynomial
q(m).

Let us say that ¢ € LIKELY if at least a 1/32m
fraction of r give a %—F ﬁ approximation of v. Note
that the size of the set LIKELY is at most 32mg.
By Theorem 1, there is a distinguishing program p;
of length 2log(32mgq) such that p; (i) accepts and
p1(?) rejects for any 4 # ¢ € LIKELY.

We make a list of all codewords ¢ which agree
with any of 2 ,...,2. on at least a 3 + # frac-
tion of positions. We then remove all elements of
this list which occur fewer than s/16m times. With
probability more than 2/3, 4 is on this list and all
elements ¢ on the list are in LIKELY. In that case,
from the elements on the list, the distinguishing pro-
gram p; will accept 4 and 4 only. As the list is ex-
plicit, the distinguishing program p; does not need
to make any oracle calls.

To carry out the above procedure, we need the
following information:

1. the index 4, the bit by, the average number of
acceptances a to high enough precision, and
the distinguishing program p;, and

2. a description of the functions 41, ..., u;—1-

Note that O(logn) bits of precision is enough to en-
code a@. Thus, the first item costs O(logn) bits. As
we took S to be a (£, 1) weak design, the second item
costs less than m = log ||A="|| + O(log® n) bits.
With probability more than 2/3, Merlin can
make Arthur accept, and whenever Arthur accepts

10

he produces u as output. Moreover, Arthur only
queries the oracle A on strings of length n = |u|,
and rejects whenever an oracle query is answered
negatively. |

The positive use of the oracle in Theorem 3 im-
plies the following corollary on the CAM complexity
of strings from a language in AM.

Corollary 19 For any set A € AM there is a poly-
nomial p(n) such that for oll x € A=",

CAMP(z) < log||A="|| + O(log® n).

Proof: Consider the Arthur-Merlin process from
Theorem 3 in which Arthur makes queries to the
oracle A. Since Arthur rejects whenever the oracle
responds negatively, we can make all oracle queries
in parallel and simulate them without oracle ac-
cess by running the Arthur-Merlin game that de-
fines A; we boost the confidence of the latter game
by standard parallel repetition and majority vot-
ing, and reject whenever a majority vote rejects.
The resulting process can be viewed as an AMAM
game, which can be transformed into an equivalent
AM game using standard techniques. This gives us
the Arthur-Merlin process we need; its description
length is only O(logn) longer than the one given in
Theorem 3. O

6. Language Compression By

Randomness Only

We have shown the power of nondeterminism in de-
compression algorithms, and also the benefit of ran-
domness in conjunction with nondeterminism in fur-
ther reducing description size. We now address the
case of decompression algorithms that use random-
ness alone. For this case, we establish some negative
results.

First, we argue that randomness barely helps to
efficiently generate a string from a short description.
In fact, the following result proves that there are
sets A of size 2F such that no string in A can be gen-
erated with probability at least 2/3 by an efficient
randomized program of size a bit less than n—k&. Re-
call that achieving the information-theoretic bound
would require programs of size k.

Proof: (of Theorem 4) We will argue that there are
many strings z of length n that (i) are not generated
with high probability by a randomized program p of
small size with access to the empty oracle and (ii)



have a small probability of being queried by any
program p of small size that runs in time ¢ and has
access to the empty oracle. Putting 2* such strings
in the oracle A does not affect the output distribu-
tion of any of these programs p by much, so they
still cannot generate any of the strings z we put in
A.

Let’s call a randomized program p small if its
length is less than some integer ¢ which we’ll de-
termine later. Let B; denote the set of inputs z of
length n for which there exists a small program p
that outputs = with probability at least 1/2 on the
empty oracle. Since every program can induce at
most two elements in B; and there are less than 2¢
small programs, we have that || B;|| < 2¢+1.

Consider the set of strings y such that p queries
y with probability at least 27° on the empty oracle,
where s is another integer we’ll set later. If p runs
in time ¢, the size of this set is bounded by 2°t. Let
B, denote the set of all queries y of length n that
are asked with probability at least 27° by at least
one small program p on the empty oracle. We have
that || B,|| < 2¢+5t.

Let A be a set of 2* strings of length n that are
neither in B; nor in B,. Such a set exists provided

(2)

Now, consider any small program p with access to
oracle A. Since A does not contain any string in
B,, the probability that p outputs something dif-
ferent on the empty oracle and on oracle A is no
more than 2¥=%. Thus, for any string x outside of
B;, the probability that p outputs x on oracle A4 is
less than % +2%7%_ Setting s = k + log 6 and using
the fact that every string in A is outside of B;, we
have that no string in A can be generated by p with
probability at least § + § = 2 on oracle A. Setting
£ =n—k—logt—>5 satisfies (2), and thereby finishes
the proof. O

2k S on _ 2£+8+1t.

In the absence of nondeterminism, the distinc-
tion between generating programs and distinguish-
ing programs becomes relevant. Indeed, Theorem
1 implies that randomized distinguishing programs
can do much better than the randomized generating
programs from Theorem 4: We can realize an upper
bound of roughly 2log||A="|| in the case of distin-
guishing programs, even for deterministic ones. [4]
proved that the factor of 2 is tight in the deter-
ministic setting. We now extend that result to the
randomized setting, i.e., we exhibit a set A that con-
tains an exponential number 2* of strings of length
n such that at least one of these strings cannot be

11

distinguished from the other strings in A by a ran-
domized program of length a little bit less than 2k
with oracle access to A.

As in [4], the core of the argument is a combi-
natorial result on cover free set systems. A family
F of sets is called K-cover free if for any different
sets Fo,...,Fx € F, Fo € UJL, Fj. The combinato-
rial result we use states that K-cover free families
of more than K3 sets need a universe of at least K2
elements.

Lemma 20 ([5]) If F is a K-cover free family

containing M sets over a universe of L element uni-
2

verse, and M > K3 then [ > ZlogM

STog et e for some
constant c.

The connection between distinguishing pro-
grams and cover free families is the following. Recall
that for a given string x and oracle A, a random-
ized distinguishing program accepts x with proba-
bility at least 2/3 on oracle A, and rejects every
other string with probability at least 2/3 on oracle
A. Let FA denote the set of randomized programs
of length less than £ that accept z with probabil-
ity more than 1/2 on oracle A. If every string in A
has a randomized distinguishing program of size less
than £ on oracle A, then the family {F/ |z € A="}
is K-cover free for K = ||A="|| — 1.

The size of this family is only M = K + 1. In
order to obtain a larger family, we argue that if all
strings in A are of length n and Kolmogorov ran-
dom with respect to the other strings in A, then
no short efficient program p on input x € A has
a noticeable probability of querying a string in A
other than z. Thus, pA(z) and p{*}(z) behave es-
sentially the same. Notice that p{?}(z) does not
depend on A. This allows us to consider a larger
set B containing M > K3 strings x of length n that
are Kolmogorov random with respect to the other
strings in B. Assuming every subset A of B of size
2% = K — 1 has an efficient randomized distinguish-
ing program of size less than ¢ when given oracle
access to A, we have that the family

F = {F{*}|z € B} ®3)
is a K-cover free family of size M > K3. Lemma
20 then implies that £ > 2k — O(1).

We now fill in the details of the proof.

Proof: (of Theorem 5) Let z be a string of length
Mn such that C(z) > |z|, where M = 2™ will be
determined later. Let B consist of the strings of
length n obtained by chopping up z into M pieces
of equal size. All M strings are guaranteed to be



different as long as m < n/2 — O(logn); otherwise,
we could obtain a short description of z by describ-
ing one of its length n segments as a copy of another
one.

A key observation is the following:

Claim 21 For every subset A of B, every x € A,
and every randomized program p of length less than
£ running in time t,

| Pr[p?(2) accepts] — Pr[pt®} () accepts]| < 1/6,

provided n > ¢(m + log(t + n)), where ¢ is some
universal constant.

Proof: We will argue that every random bit se-
quence that leads to a different outcome for p(x)
and p{®}(z), has a short description with respect to
z. Since there can only be few random bit sequences
with a short description, this implies the claim.

Let us denote the outcome of p on input z, oracle
O, and random bit sequence r € {0, 1}t by p®(z,r).
Suppose that p*(z,r) # p{®} (z,r). It must be that
pl#}(z,r) queries some string y € A. We can de-
scribe this y with p, z, r, and an index of size logt
indicating the time when the query takes place. By
adding the remaining parts of z, the indices of x
and y in 2, and making everything prefix free, we
obtain a description of (z,7) showing that

C({z,r)) <|z|+|r| —n+ £+ 2m + O(log(t + n)).
Symmetry of information tells us that
C({z,1)) > C(z) + C(r|z) — O(m + log(t + n)).
Since C(z) = |z|, we conclude that
C(r|z) <|r| —n+ O(m + log(t +n)).

We can make the fraction of random bit strings r
that have such a short description less than 1/6 by
choosing n > ¢(m + log(t + n)) for some sufficiently
large constant ¢. The claim follows. O

Now, suppose that for every subset A of B of
size 2% every string z € A satisfies CBPD 4 (z) < ¢,
where k, t, and £ are some integers. Then the family
F defined by (3) is K-cover free for K = 2% —1. In-
deed, consider any subset A of B containing the 2*
different strings xg,1,...,2Zx from B. Let p be a
randomized program of length less than ¢ that runs
in time ¢, such that p4(zo) accepts with probabil-
ity at least 2/3, and p”(z;) rejects with probability
at least 2/3 for 1 <4 < K. Claim 21 implies that
pE Fg;{f(’} and p ¢ Fi® for any 1 < i < K. Thus,

12

Fgc{om °} is not covered by the union of the K sets
Fit1<i<K.

Since the family F is of size M = 2™, Lemma
20 implies that ¢ > 2k — c3 for some constant cs,
provided M > K3. All size conditions can be met
for values of k up to ¢;n — ¢y logt for some positive
constants ¢; and ¢,. O

Recall that [4] established the same lower bound
as in Theorem 5 for CD complexity instead of
CBPD complexity. They also extended their re-
sult to CD complexity with access to an oracle in
NP NcoNP. Similar to the formulation of Theorem
5, their extension can be phrased as follows: For
every robust (NP N coNP) machine M, there exist
constants ¢, ¢z, and c3 such that for any integers
n, k, and t satisfying k < ¢1n — ¢z logt, there exists
a set A with log||A="|| = k and a string x € A such
that

CD*M” (2) > 2log [|A="]| - cs.

The robustness condition is implicit in the proof in
[4]. By a robust (NP N coNP) machine M, we mean
an oracle machine M such that for every oracle B,
M5B behaves like an (NP N coNP) machine. Note,
though, that Theorem 2 implies the existence of a
promise-(NP N coNP) machine M and a polynomial
p such that for any set A and every z € A,

CDPM” (z) < log [|A="(| + O(6(n)),

where d(n) = (y/log ||A="|| + logn)logn.

In a similar way, we can extend Theorem 5 as
follows: For every robust (AM N coAM) machine
M, there exist constants ¢y, ¢2, and c3 such that for
any integers n, k, and ¢ satisfying k < ¢in —cologt,
there exists a set A with log||A="|| = k and a string
x € A such that

CD"M" (z) > 21og || A" = c5.

However, without the robustness requirement, The-
orem 3 implies the existence of a promise-(AM N
coAM) machine M and a polynomial p such that
for any set A and every = € A,

CDPM* (z) < log ||A="|] + O(log® n).

Acknowledgments

We would like to thank Lance Fortnow for a helpful
discussion and Andrei Romashchenko for beneficial
comments on an earlier version of the paper.



References

[1]

[2]

[3]

[5]

[6]

[9]

[10]

[11]

[12]

S. Aaronson. The complexity zoo. http://
/www.cs.berkeley.edu/~aaronson/zoo.html.

J. Balcazar, J. Diaz, and J. Gabarré. Struc-
tural Complexity I, volume 11 of FEATCS
Monographs on Theoretical Computer Science.
Springer-Verlag, 1995.

H. Buhrman, L. Fortnow, and S. Laplante. Re-
source bounded Kolmogorov complexity revis-
ited. SIAM Journal on Computing, 31(3):887—
905, 2002.

H. Buhrman, S. Laplante, and P. Bro Mil-
tersen. New bounds for the language com-
pression problem. In Proceedings of the 15th
IEEE Conference on Computational Complez-
ity, pages 126-130. IEEE, 2000.

A. G. Dyachkov and V. V. Rykov. Bounds
on the length of disjunctive codes. Problemy
Peredachi Informatsii, 18:7-13, 1982. In Rus-
sian.

S. Goldwasser and S. Micali. Probabilistic en-
cryption. Journal of Computer and System Sci-
ences, 28:270-299, 1984.

F. Hennie and R. Stearns. Two-tape simula-
tion of multitape Turing machines. Journal of
the ACM, 13:533-546, 1966.

A. Klivans and D. van Melkebeek. Graph noni-
somorphism has subexponential size proofs un-
less the polynomial hierarchy collapses. SIAM
Journal on Computing, 31(5):1501-1526, 2002.

R. Kumar and D. Sivakumar. Proofs, codes,
and polynomial-time reducibilities. In Proceed-
ings of the 14th IEEE Conference on Compu-
tational Complexity, pages 46-53. IEEE, 1999.

T. Lee and A. Romashchenko. On polynomially
time bounded symmetry of information. Sub-
mitted, 2004. Available at http://www.cwi.nl/
/"tlee/syminfo.ps.

M. Li and P. Vitanyi. An Introduction to
Kolmogorov Complexity and its Applications.

Springer-Verlag, New York, second edition,
1997.

N. Nisan and A. Wigderson. Hardness vs. ran-
domness. Journal of Computer and System Sci-
ences, 49:149-167, 1994.

13

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

C. Papadimitriou. Computational Complexity.
Addison-Wesley, 1994.

R. Raz, O. Reingold, and S. Vadhan. Extract-
ing all the randomness and reducing the error
in Trevisan’s extractors. In Proceedings of the
31st ACM Symposium on the Theory of Com-
puting, pages 149-158. ACM, 1999.

R. Shaltiel. Recent developments in explicit
construction of extractors. Bulletin of the Eu-
ropean Association for Theoretical Computer
Science, T7:67-95, 2002.

R. Shaltiel and C. Umans. Simple extractors
for all min-entropies and a new pseudo-random
generator. In Proceedings of the 42st IEEFE
Symposium on Foundations of Computer Sci-
ence, pages 648-657. IEEE, 2001.

M. Sipser. A complexity theoretic approach to
randomness. In Proceedings of the 15th ACM
Symposium on the Theory of Computing, pages
330-335. ACM, 1983.

M. Sudan. Decoding of Reed Solomon codes
beyond the error-correction bound. Journal of
Complexity, 13(1):180-193, 1997.

M. Sudan, L. Trevisan, and S. Vadhan. Pseu-
dorandom generators without the XOR lemma.
Technical Report TR-98-074, Electronic Col-
loquium on Computational Complexity, 1999.
Revision 1.

A. Ta-Shma, C. Umans, and D. Zuckerman.
Loss-less condensers, unbalanced expanders,
and extractors. In Proceedings of the 33st ACM
Symposium on the Theory of Computing, pages
143-152. ACM, 2001.

A. Ta-Shma, D. Zuckerman, and S. Safra. Ex-
tractors from Reed-Muller codes. In Proceed-
ings of the 42st IEEE Symposium on Foun-
dations of Computer Science, pages 638—647.
IEEE, 2001.

L. Trevisan. Construction of extractors using
pseudo-random generators. In Proceedings of
the 31st ACM Symposium on the Theory of
Computing, pages 141-148. ACM, 1999.

C. Umans. Pseudo-random generators for all
hardnesses. In Proceedings of the 34st ACM
Symposium on the Theory of Computing, pages
627-634. ACM, 2002.



A Proofs of Claims 17 and 18

Claim 17 For any v = y(m,n) > 0, there exists
s = O(n?/v?) such that with probability at least 3/4
over Arthur’s choice of r1,...,rs the following two
things will simultaneously happen:

1. A 1/8m fraction of r1,.. .,
approzimations to .

rs will give %+ ﬁ

2. The total number of acceptances by B over the
strings T1,...,rs will be within s of the ex-
pected. That is,

|3 wie) - sal <.
i=1

Proof: To lower bound the probability that both of
these events happen, we upper bound the proba-
bility that each event individually does not happen
and use a union bound.

Item (1): Notice that for a given r, if

Pr [ Blas()- i s(@)i(@)r)] -
Pr(B (it (z) -+ s (2)br)] 2 1/4m

then r gives a 5 14 ——approx1mat10n of . We will
say that r is bad 1f it does not yield a 2 + 4m ap-
proximation to 4. By Equation 2 and Markov’s in-
equality,

1-1/2m

<
Prr[TEbad]_l—l/4m<

1-1/4m.

By a Chernoff bound, for some constant ¢; > 0,

Pr [|[bad|| > (1 —1/8m)s] < exp(—c15/m?).

14

Item (2): By a Chernoff bound, for some constant
Ccy > 0,

8

Pr[|1/sZw(zj) —a| > ] < 2exp(—c2y?s/n?).
j=1

By taking s = c3n?/4? for a sufficiently large
constant ¢z, the probability of each item will be less
than 1/8, and the claim follows. O

Claim 18 Ifry,...,7s satisfy the two conditions of
the previous claim with v = n/256m?, then for any
demonstration of acceptances by Merlin at least a
1/16m fraction of z. ,...,z. will be 1 + % ap-
proximations to .

Proof: By assumption, the number of acceptances
for the strings r1,...,7s is between sa — sy and
sa + s7y. Since Merlin has to provide witnesses for
sa — s acceptances and can never fool Arthur in
providing an invalid witness, Merlin has at most
25y acceptances to play with. Consider them as
Merlin’s potential to fool Arthur.

How can z,; and z; differ? As Arthur verifies
the witnesses prov1ded by Merlin, wherever z ~ has
a one, 2z,; must also have a one. Thus, if 2, " and
2l T differ in ¢ positions, then Merlin has to spend at
least ¢ units of his potential on r;. Since Merlin’s
total potential is bounded by 2s+v, we have that the
number of r;’s such that z,, and z;, differ in ¢ or
more positions is bounded by 2sy/ t.

Under the conditions of the claim, a 1/8m frac-
tion of the z,; are %+ ﬁ approximations of 4. Set-
ting ¢t = n/8m and v = ﬁ/256m , we have that a
fraction a least g - 277 = T of the z’ ’s are ap-
pr0x1mat10ns that agree with 4 in a fractlon at least
5 + L - L = 5 + m of the positions. O

8m



