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Abstract

One of the strongest techniques available for showing lower bounds on bounded-error
communication complexity is the logarithm of the approximation rank of the communica-
tion matrix—the minimum rank of a matrix which is close to the communication matrix in `∞
norm. Krause [Kra96] showed that the logarithm of approximation rank is a lower bound in
the randomized case, and later Buhrman and de Wolf [BW01] showed it could also be used
for quantum communication complexity. As a lower bound technique, approximation rank has
two main drawbacks: it is difficult to compute, and it is not known to lower bound the model
of quantum communication complexity with entanglement.

Linial and Shraibman [LS07] recently introduced a quantity, called γα
2 , to quantum com-

munication complexity, showing that it can be used to lower bound communication in the
model with shared entanglement. Here α is a measure of approximation which is related to
the allowable error probability of the protocol. This quantity can be written as a semidefinite
program and gives bounds at least as large as many techniques in the literature, although it is
smaller than the corresponding α-approximation rank, rkα. We show that in fact log γα

2 (A)
and log rkα(A) agree up to small factors. As corollaries we obtain a constant factor polynomial
time approximation algorithm to the logarithm of approximation rank, and that the logarithm
of approximation rank is a lower bound for quantum communication complexity with entan-
glement.

1 Introduction
Often when trying to show that a problem is computationally hard we ourselves face a compu-
tationally hard problem. The minimum cost algorithm for a problem is naturally phrased as an
optimization problem, and frequently techniques to lower bound this cost are also hard combina-
torial optimization problems.

When taking such an computational view of lower bounds, it is natural to borrow ideas from
approximation algorithms which have had a good deal of success in dealing with NP-hardness.
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Beginning with the seminal approximation algorithm for MAX CUT of Goemans and Williamson
[GW95], a now common approach to hard combinatorial optimization problems is to look at a
semidefinite relaxation of the problem with the hope of showing that such a relaxation provides a
good approximation to the original problem.

We take this approach in dealing with approximation rank, an optimization problem that arises
in communication complexity. In communication complexity, introduced by Yao [Yao79], two
parties Alice and Bob wish to compute a function f : X × Y → {−1, +1}, where Alice receives
x ∈ X and Bob receives y ∈ Y . The question is how much they have to communicate to eval-
uate f(x, y) for the most difficult pair (x, y). Associate to f a |X|-by-|Y | communication matrix
Mf where Mf [x, y] = f(x, y). A well-known lower bound on the deterministic communication
complexity of f due to Melhorn and Schmidt [MS82] is log rk(Mf ). This lower bound has many
nice features—rank is easy to compute, at least from a theoretical perspective, and the famous
log rank conjecture of Lovász and Saks [LS88] asserts that this bound is nearly tight in the sense
that there is a universal constant c such that (log rk(Mf ))

c is an upper bound on the deterministic
communication complexity of f , for every function f .

When we look at bounded-error randomized communication complexity, where Alice and Bob
are allowed to flip coins and answer incorrectly with some small probability, the relevant quantity
is no longer rank but approximation rank. For a sign matrix A, the α-approximation rank, denoted
rkα(A), is the minimum rank of a matrix B which has the same sign pattern as A and whose en-
tries have magnitude between 1 and α. When used to lower bound randomized communication
complexity, the approximation factor α is related to the allowable error probability of the protocol.
In the limit as α → ∞ we obtain the sign rank, denoted rk∞(A), the minimum rank of a matrix
with the same sign pattern as A. Paturi and Simon [PS86] showed that the log rk∞(Mf ) exactly
characterizes the unbounded error complexity of f , where Alice and Bob only have to get the cor-
rect answer on every input with probability strictly larger than 1/2. Krause [Kra96] extended this
to the bounded-error case by showing that log rkα(Mf ) is a lower bound on the α−1

2α
-error random-

ized communication complexity of f . Later, Buhrman and de Wolf [BW01] showed that one-half
this quantity is also a lower bound on the bounded-error quantum communication complexity of
f , when the players do not share entanglement. Approximation rank is one of the strongest lower
bound techniques available for either of these bounded-error models. In view of the log rank con-
jecture it is natural to conjecture as well that a polynomial in the logarithm of approximation rank
is an upper bound on randomized communication complexity.

As a lower bound technique, however, approximation rank suffers from two deficiencies. The
first is that it is quite difficult to compute in practice. Although we do not know if it is NP-hard to
compute, the class of problems minimizing rank subject to linear constraints does contain NP-hard
instances (see, for example, Section 7.3 in the survey of Vandenberghe and Boyd [VB96]). The
second drawback is that it is not known to lower bound quantum communication complexity with
entanglement.

We address both of these problems. We make use of a quantity γα
2 which was introduced in the

context of communication complexity by Linial et al. [LMSS07]. This quantity can naturally be
viewed as a semidefinite relaxation of rank, and it is not hard to show that ( 1

α
γα

2 (A))2 ≤ rkα(A).
We show that this lower bound is in fact reasonably tight.
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Theorem 1 Let 1 < α < ∞. Then for any m-by-n sign matrix A

1

α2
γα

2 (A)2 ≤ rkα(A) = Oα

(
ln(mn)γα

2 (A)2
)3

The quantity γα
2 (A) can be written as a semidefinite program and so can be computed up to additive

error ε in time polynomial in the size of A and log(1/ε) by the ellipsoid method (see, for example,
the textbook [GLS88]). Thus Theorem 1 gives a constant factor polynomial time approximation
algorithm to compute log rkα(A). Moreover, the proof of this theorem gives a method to find a
near optimal low rank approximation to A in randomized polynomial time.

Linial and Shraibman [LS07] have shown that log γα
2 (A) is a lower bound on the α−1

2α
-error

quantum communication complexity of the sign matrix A with entanglement, thus we also obtain
the following corollary.

Corollary 2 Let 0 < ε < 1/2. Let Q∗
ε(A) be the quantum communication complexity of a m-by-n

sign matrix A with entanglement. Then

Q∗
ε(A) ≥ 1

6
log rkαε(A)− 1

2
log log(mn)− log

α2
ε

αε − 1
−O(1),

where αε = 1
1−2ε

.

The log log factor is necessary as the n-bit equality function with communication matrix of size
2n-by-2n has approximation rank Ω(log n) [Alo08], but can be solved by a bounded-error quan-
tum protocol with entanglement—or randomized protocol with public coins—with O(1) bits of
communication. This corollary means that approximation rank cannot be used to show a large
gap between the models of quantum communication complexity with and without entanglement,
if indeed such a gap exists.

Our proof works roughly as follows. Note that the rank of a m-by-n matrix A is the smallest
k such that A can be factored as A = XY T where X is a m-by-k matrix and Y is a n-by-k
matrix. The factorization norm γ2(A) can be defined as minX,Y :XY T =A r(X)r(Y ) where r(X) is
the largest `2 norm of a row of X . Let X0, Y0 be an optimal solution to this program so that all rows
of X0, Y0 have squared `2 norm at most γ2(A). The problem is that, although the rows of X0, Y0

have small `2 norm, they might still have large dimension. Intuitively, however, if the rows of X0

have small `2 norm but X0 has many columns, then one would think that many of the columns
are rather sparse and one could somehow compress the matrix without causing too much damage.
The Johnson-Lindenstrauss dimension reduction lemma [JL84] can be used to make this intuition
precise. We randomly project X0 and Y0 to matrices X1, Y1 with column space of dimension
roughly ln(mn)γα

2 (A)2. One can argue that with high probability after such a projection X1Y
T
1

still provides a decent approximation to A. In the second step of the proof, we do an error reduction
step to show that one can then improve this approximation without increasing the rank of X1Y

T
1

by too much.
Ben-David, Eiron, and Simon [BES02] have previously used this dimension reduction tech-

nique to show that rk∞(A) = O(ln(mn)γ∞2 (A)2) for a sign matrix A. In this limiting case, how-
ever, γ∞2 (A) fails to be a lower bound on rk∞(A). Buhrman, Vereshchagin, and de Wolf [BVW07],
and independently Sherstov [She08], have given an example of a sign matrix A where γ∞2 (A) is
exponentially larger than rk∞(A).
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2 Preliminaries
We will use the following form of Hoeffding’s inequality [Hoe63].

Lemma 3 ([Hoe63]) Let a1, . . . , an ∈ R, and δ1, . . . , δn be random variables with Pr[δi = 1] =
Pr[δi = −1] = 1/2. Then for any t ≥ 0

Pr

[∣∣∣∣∣
n∑

i=1

aiδi

∣∣∣∣∣ > t

]
≤ 2 exp

(
−t2

2
∑

i a
2
i

)

2.1 Matrix notation
We will work with real matrices and vectors throughout this paper. For a vector u, we use ‖u‖ for
the `2 norm of u, and ‖u‖∞ for the `∞ norm of u. For a matrix A let AT denote the transpose of
A. We let A ◦ B denote the entrywise product of A and B. For a positive semidefinite matrix M
let λ1(M) ≥ · · · ≥ λn(M) ≥ 0 be the eigenvalues of M . We define the ith singular value of A,
denoted σi(A), as σi(A) =

√
λi(AAT ). The rank of A, denoted rk(A) is the number of nonzero

singular values of A. We will use several matrix norms.

• Spectral or operator norm: ‖A‖ = σ1(A).

• Trace norm: ‖A‖tr =
∑

i σi(A).

• Frobenius norm: ‖A‖F =
√∑

i σi(A)2.

One can alternatively see that ‖A‖2
F = Tr(AAT ) =

∑
i,j A[i, j]2.

Our main tool will be the factorization norm γ2 [TJ89], introduced in the context of complexity
measures of matrices by Linial et al. [LMSS07]. This norm can naturally be viewed as a semidef-
inite programming relaxation of rank as we now explain. We take the following as our primary
definition of γ2:

Definition 4 ([TJ89],[LMSS07]) Let A be a matrix. Then

γ2(A) = min
X,Y :XY T =A

r(X)r(Y ),

where r(X) is the largest `2 norm of a row of X .

The quantity γ2 can equivalently be written as the optimum of a maximization problem known
as the Schur product operator norm: γ2(A) = maxX:‖X‖=1 ‖A ◦ X‖. The book of Bhatia (Thm.
3.4.3 [Bha07]) contains a nice discussion of this equivalence and attributes it to an unpublished
manuscript of Haagerup. An alternative proof can be obtained by writing the optimization problem
defining γ2 as a semidefinite programming problem and taking its dual [LSŠ08].

More convenient for our purposes will be a formulation of γ2 in terms of the trace norm. One
can see that this next formulation is equivalent to the Schur product operator norm formulation
using the fact that ‖A‖tr = maxB:‖B‖≤1 Tr(ABT ).
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Proposition 5 (cf. [LSŠ08]) Let A be matrix. Then

γ2(A) = max
u,v

‖u‖=‖v‖=1

‖A ◦ vuT‖tr

From this formulation we can easily see the connection of γ2 to matrix rank. This connection is
well known in Banach spaces theory, where it is proved in a more general setting, but the following
proof is more elementary.

Proposition 6 ([TJ89], [LSŠ08]) Let A be a matrix. Then

rk(A) ≥ γ2(A)2

‖A‖2
∞

.

Proof: Let u, v be unit vectors such that γ2(A) = ‖A ◦ vuT‖tr. As the rank of A is equal to the
number of nonzero singular values of A, we see by the Cauchy-Schwarz inequality that

rk(A) ≥ ‖A‖2
tr

‖A‖2
F

.

As rk(A ◦ vuT ) ≤ rk(A) we obtain

rk(A) ≥ ‖A ◦ vuT‖2
tr

‖A ◦ vuT‖2
F

≥ γ2(A)2

‖A‖2
∞

2

Finally, we define the approximate version of the γ2 norm.

Definition 7 ([LS07]) Let A be a sign matrix, and let α ≥ 1.

γα
2 (A) = min

B:1≤A[i,j]B[i,j]≤α
γ2(B)

γ∞2 (A) = min
B:1≤A[i,j]B[i,j]

γ2(B)

Similarly, we define can define approximation rank.

Definition 8 (approximation rank) Let A be a sign matrix, and let α ≥ 1.

rkα(A) = min
B:1≤A[i,j]B[i,j]≤α

rk(B)

rk∞(A) = min
B:1≤A[i,j]B[i,j]

rk(B)

As corollary of Proposition 6 we get
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Corollary 9 Let A be a sign matrix and α ≥ 1.

rkα(A) ≥ 1

α2
γα

2 (A)2

We will also use a related norm ν known as the nuclear norm.

Definition 10 ([Jam87]) Let A be a m-byn matrix.

ν(A) = min
αi

{∑
|αi| : A =

∑
i

αixiy
T
i

}

where xi ∈ {−1, +1}m and yi ∈ {−1, +1}n.

It follows from Grothendieck’s inequality that ν(A) and γ2(A) agree up to a constant multi-
plicative factor. For details see [LS07].

Proposition 11 (Grothendieck’s inequality) Let A be a matrix.

γ2(A) ≤ ν(A) ≤ KG γ2(A),

where 1.67 ≤ KG ≤ 1.78 . . . is Grothendieck’s constant.

The best lower bound on Grothendieck’s constant can be found in a paper of Reeds [Ree91], and
the best upper bound is due to Krivine [Kri79].

3 Main Result
In this section we present our main result relating γα

2 (A) and rkα(A). We show this in two steps:
first we upper bound rk2α−1(A) in terms of γα

2 (A) using dimension reduction. The second step of
error reduction shows that rk2α−1(A) and rkα(A) are fairly closely related.

3.1 Dimension reduction
Theorem 12 Let A be a m-by-n sign matrix and α > 1.

rk2α−1(A) ≤ 16α2

(α− 1)2
ln(4mn)γα

2 (A)2

Proof: Instead of γα
2 we will work with να which makes the analysis easier and is only larger by

at most a multiplicative factor of 2.
Let B be such that ν(B) = να(A) and J ≤ A ◦ B ≤ αJ , where J is the all ones matrix. By

definition of ν, there is a decomposition

B =
∑

i

βixiy
T
i
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where xi, yi are sign vectors and
∑

i |βi| = ν(B). We can alternatively view this decomposition
as a factorization of B. Let X be a matrix whose ith column is

√
βixi and Y the matrix whose ith

column is
√

βiyi. The above equation gives that XY T = B. The matrices X and Y also have the
nice property that all entries in column i have the same magnitude |

√
βi|.

Say that X is a m-by-k matrix and Y is a n-by-k matrix. Notice that while we know the `2

norm of the rows of X, Y is at most ν(B), the number of columns k could be much larger. The
idea will be to randomly map X, Y down to matrices X1, Y1 with k′ many columns for k′ ≈ ν(B)2

and show that the entries of X1Y
T
1 are close to those of XY T with high probability.

To this end, let δij ∈ {−1, +1} be independent identically distributed random variables taking
on −1 and +1 with equal probability, and let R be a k-by-k′ matrix where R[i, j] = 1√

k′ δij . Define
X1 = XR, Y1 = Y R. Then rk(X1Y

T
1 ) ≤ k′. We now bound how closely X1Y

T
1 approximates

XY T entrywise.

X1Y
T
1 [i, j] =

k′∑
`=1

X1[i, `]Y1[j, `]

=
k′∑

`=1

(
k∑

r=1

X[i, r]R[r, `]

)(
k∑

r=1

Y [j, r]R[r, `]

)

=
k∑

r=1

X[i, r]Y [j, r] +
k′∑

`=1

∑
r 6=r′

X[i, r]R[r, `]Y [j, r′]R[r′, `].

The first term is simply B[i, j] thus it suffices to bound the magnitude of the second term.

Pr
R

[∣∣∣∣∣
k′∑

`=1

∑
r 6=r′

X[i, r]R[r, `]Y [j, r′]R[r′, `]

∣∣∣∣∣ > t

]
= Pr

{δr,`}

[∣∣∣∣∣
k′∑

`=1

∑
r 6=r′

δr,`δr′,`

√
βrβr′

k

∣∣∣∣∣ > t

]

≤ 2 exp

(
−t2k′

2ν(B)2

)
by Hoeffding’s inequality Lemma 3.

By taking k′ = 2ν(B)2 ln(4mn)/t2 we can make this probability less than 1/2mn. Then by a
union bound there exists an R such that∣∣(XY t)[i, j]− (X1Y

t
1 )[i, j]

∣∣ ≤ t

for all i, j. Taking t = α−1
2α

and rescaling X1Y
T
1 appropriately gives the theorem. 2

3.2 Error-reduction
In this section, we will see that given a matrix A′ which is an α′ > 1 approximation to the sign
matrix A, we can obtain a matrix which is a better approximation to A and whose rank is not
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too much larger than that of A′ by applying a low-degree polynomial approximation of the sign
function to the entries of A′. This technique has been used several times before, for example
[Alo08, KS07].

Let p(x) = a0 + a1x + . . . + adx
d be a degree d polynomial. For a matrix A, we define p(A) to

be the matrix a0J + a1A + . . . + adA
◦d where A◦s is the matrix whose (i, j) entry is A[i, j]s, and

J is the all ones matrix.

Lemma 13 Let A be a matrix and p be a degree d polynomial. Then rk(p(A)) ≤ (d + 1)rk(A)d

Proof: The result follows using subadditivity of rank and that rk(A◦s) ≤ rk(A⊗s) = rk(A)s since
A◦s is a submatrix of A⊗s. 2

In general for any constants 1 < β ≤ α < ∞ one can show that there is a constant c such that
rkβ(A) ≤ rkα(A)c by looking at low degree approximations of the sign function (see Corollary 1
of [KS07] for such a statement). As we are interested in the special case where α, β are quite close,
we give an explicit construction in an attempt to keep the exponent as small as possible.

Proposition 14 Fix ε > 0. Let a3 = 1/(2 + 6ε + 4ε2), and a1 = 1 + a3. Then the polynomial

p(x) = a1x− a3x
3

maps [1, 1 + 2ε] into [1, 1 + ε] and [−1− 2ε,−1] into [−1− ε,−1].

Proof: As p is an odd polynomial, we only need to check that it maps [1, 1 + 2ε] into [1, 1 + ε].
With our choice of a1, a3, we see that p(1) = p(1 + 2ε) = 1. Furthermore, p(x) ≥ 1 for all
x ∈ [1, 1+2ε], thus we just need to check that the maximum value of p(x) in this interval does not
exceed 1 + ε.

Calculus shows that the maximum value of p(x) is attained at x = (1+a3

3a3
)1/2. Plugging this

into the expression for p(x), we see that the maximum value is

max
x∈[1,1+2ε]

p(x) =
2

3
√

3

(1 + a3)
3/2

√
a3

.

We want to show that this is at most 1 + ε, or equivalently that

2

3
√

3

√
2 + 6ε + 4ε2

1 + ε

(
3 + 6ε + 4ε2

2 + 6ε + 4ε2

)3/2

≤ 1.

One can verify that this inequality is true for all ε ≥ 0. 2
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3.3 Putting everything together
Now we are ready to put everything together.

Theorem 15 Fix α > 1 and let A be a m-by-n sign matrix. Then

1

α2
γα

2 (A)2 ≤ rkα(A) ≤ 213α6

(α− 1)6
ln3(4mn)γα

2 (A)6.

Proof: By Theorem 12

rk2α−1(A) ≤ 16α2

(α− 1)2
ln(4mn)γα

2 (A)2.

Now we can use the polynomial constructed in Proposition 14 and Lemma 13 to obtain

rkα(A) ≤ 2rk2α−1(A)3 ≤ 213α6

(α− 1)6
ln3(4mn)γα

2 (A)6.

2

4 Discussion and open problems
One of the fundamental questions of quantum information is the power of entanglement. If we
believe that there can be a large gap between the communication complexity of a function with
and without entanglement then we must develop techniques to lower bound quantum communica-
tion complexity without entanglement that do not also work for communication complexity with
entanglement. We have eliminated one of these possibilities in approximation rank.

As can be seen in Theorem 15, the relationship between γα
2 (A) and rkα(A) weakens as α →∞

because the lower bound becomes worse. Indeed, Buhrman, Vereshchagin, and de Wolf [BVW07],
and independently Sherstov [She08], have given examples where γ∞2 (A) is exponentially larger
than rk∞(A). It is an interesting open problem to find a polynomial time approximation algorithm
for sign rank rk∞(A). As far as we are aware, it is also an open question if sign rank is NP-hard to
compute.
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