Due at 2:40pm Tuesday, April 17, 2018.

- (a) Give a direct proof that a graph has a 2-flow if and only if every vertex has even degree, i.e., do not use any results on Z₂-flows.
 - (b) Show that every graph with a Hamiltonian cycle has a 4-flow.¹
- 2. (a) Determine the flow number of $C_5 * K_1$, the wheel with 5 spokes.²
 - (b) Determine the flow number of the Petersen graph.
- 3. (a) Show that every graph on n vertices and (k-1)n+1 edges, where n > k, contains every tree on k edges.
 - (b) Show that the Erdős-Sós conjecture [see Diestel, p.179] is best possible in the sense that, for every k and infinitely many n, there is a graph on n vertices and with $\frac{1}{2}(k-1)n$ edges that contains no tree with k edges.³
- 4. Let $m, n \in \mathbb{N}$, and assume that m-1 divides n-1. Show that every tree T of order m satisfies $R(T, K_{1,n}) = m + n 1$.⁴
- 5. Show that, for constant $p \in (0,1)$, almost every graph in $\mathcal{G}(n,p)$ has diameter 2.⁵

- ³Diestel, $\S7\#15$
- ⁴Diestel, $\S9\#13$

¹Diestel, $\S6\#16$

²Diestel, $\S6\#18$

⁵Diestel, $\S11\#7$