Due at 2:40pm Tuesday, April 3, 2018.

- 1. Show that adding a new edge to a maximal planar graph of order at least 6 always produces both a TK_5 and a $TK_{3,3}$ subgraph.¹
- 2. Show that a 2-connected plane graph is bipartite if and only if every face is bounded by an even cycle.²
- 3. A k-chromatic graph G is called *critical* if $\chi(G v) < k$ for every vertex $v \in G$. Determine the critical 3-chromatic graphs.³
- 4. For every integer k, find a 2-chromatic graph whose choice number is at least k^4 .
- 5. A family of (not necessarily distinct) subgraphs of a graph G is called a *double cover* of G if every edge of G lies on exactly two of these subgraphs. The *cycle double cover conjecture* asserts that every bridgeless multigraph admits a double cover by cycles. Prove the conjecture for graphs with a 4-flow.⁵
- 6. Prove that a plane triangulation is 3-colorable if and only if all its vertices have even degree. 6

- ²Diestel, $\S4\#24$
- ³Diestel, $\S5\#8$
- ⁴Diestel, $\S5\#28$
- ⁵Diestel, $\S6\#17$
- ⁶Diestel, $\S6\#21$

¹Diestel, $\S4\#21$