Due at 2:40pm Thursday, February 22, 2018.

- 1. Let G be an r-regular graph on 2r vertices. Show that G has a perfect matching.
- 2. (a) Let e be an edge in a 2-connected graph $G \neq K_3$. Show that either G e or G/e is again 2-connected.
 - (b) Does every 2-connected graph $G \neq K_3$ have an edge e such that G/e is still 2-connected?¹
- 3. Derive the marriage theorem from König's theorem.²
- 4. Show that a graph G contains k independent edges if and only if $q(G-S) \leq S+|G|-2k$ for all sets $S \subseteq V(G)$.³ [Hint: add |G|-2k new vertices and connect them to every other vertex, including to one another. What can you say about matchings in this new graph?]
- 5. Let G be a graph, and H := L(G) its line graph.⁴
 - (a) Show that H is Hamiltonian if G has a spanning Eulerian subgraph.
 - (b) Deduce that H is Hamiltonian if G is 4-edge-connected. [Hint: make all the vertices have even degree by deleting edges, but be careful not to disconnect the graph.]

¹Diestel, $\S3, \#9$

²Diestel, §2, # 5

³Diestel §2, # 20

⁴Diestel, $\S10, \#5$