1. Prove that if a tree has an even number of edges, then it has at least one vertex of even degree.

2. How many 2-regular simple graphs (up to isomorphism) are there with 10 vertices?

3. Show that any two longest paths in a connected graph must have at least one vertex in common.

4. Let \(d \in \mathbb{N} \) and \(V := \{0, 1\}^d \); thus, \(V \) is the set of all \(0-1 \) sequences of length \(d \). The graph on \(V \) in which two such sequences form an edge if and only if they differ in exactly one position is called the \(d \)-dimensional cube. Determine the average degree, number of edges, diameter, girth, and circumference of this graph. (Hint for the circumference: induction on \(d \).)

[This graph is usually given the notation \(Q_d \).]

5. Show that \(\text{rad}(G) \leq \text{diam}(G) \leq 2 \text{rad}(G) \). Give an example of a graph where these inequalities are all strict (i.e., “<” instead of “≤”).

6. Show that every automorphism [an isomorphism from a graph to itself] of a tree fixes a vertex or an edge.

7. An oriented complete graph [i.e., giving a direction to each edge of the complete graph, forming a directed graph] is called a tournament. Show that every tournament contains a (directed) Hamilton path.

8. Find a connected graph \(G \) whose square \(G^2 \) has no Hamilton cycle.

1Diestel §1, #2
2Diestel §1, #6
3Diestel §1, #28
4Diestel §10, #1
5Diestel §10, #13