Due at 2:40pm Thursday, February 8, 2018.

- 1. Prove that if a tree has an even number of edges, then it has at least one vertex of even degree.
- 2. How many 2-regular simple graphs (up to isomorphism) are there with 10 vertices?
- 3. Show that any two longest paths in a connected graph must have at least one vertex in common.
- 4. Let $d \in \mathbb{N}$ and $V := \{0, 1\}^d$; thus, V is the set of all 0 1 sequences of length d. The graph on V in which two such sequences form an edge if and only if they differ in exactly one position is called the *d*-dimensional cube. Determine the average degree, number of edges, diameter, girth, and circumference of this graph. (Hint for the circumference: induction on d.)¹

[This graph is usually given the notation Q_{d} .]

- 5. Show that $\operatorname{rad}(G) \leq \operatorname{diam}(G) \leq 2\operatorname{rad}(G)$.² Give an example of a graph where these inequalities are all strict (i.e., "<" instead of " \leq ").
- 6. Show that every automorphism [an isomorphism from a graph to itself] of a tree fixes a vertex or an edge.³
- 7. An oriented complete graph [i.e., giving a direction to each edge of the complete graph, forming a directed graph] is called a *tournament*. Show that every tournament contains a (directed) Hamilton path.⁴
- 8. Find a connected graph G whose square G^2 has no Hamilton cycle.⁵

- ³Diestel §1, #28
- ⁴Diestel $\S10, \#1$

¹Diestel $\S1, \#2$

²Diestel $\S1, \#6$

⁵Diestel $\S10, \#13$