COMS W4203: Graph Theory - Final Exam Review

Timothy Sun

Columbia University

(ロ)、(型)、(E)、(E)、 E) の(の)

The final exam isn't "cumulative."

- Basic definitions (degree, isomorphism, girth, etc.)
- Eulerian/Hamiltonian conditions (even degree, Dirac)
- ▶ Menger (k-connected ⇔ k disjoint paths), Kuratowski (planar ⇔ no K₅ or K_{3,3})

Fundamentals (cont.)

Problem

Let d_1, \ldots, d_n be a sequence of positive integers such that $\sum d_i = 2n - 2$. Show that any such sequence is the degree sequence of a tree.

Problem

Consider the family of graphs \mathcal{F} defined recursively as follows:

•
$$K_1 \in \mathcal{F}$$
.

- $G \in \mathcal{F} \Rightarrow \overline{G} \in \mathcal{F}.$
- $\bullet \ G, H \in \mathcal{F} \Rightarrow G \sqcup H \in \mathcal{F}.$

Show that every graph in \mathcal{F} has no P_4 as an induced subgraph. Show that every complete multipartite graph is in \mathcal{F} .

Colorings

- Brooks ($\chi \leq \Delta$ except for K_n or C_n)
 - Pf. carefully choosing an ordering for greedy coloring.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- Konig (bipartite: $\chi' = \Delta$), Vizing ($\chi' \le \Delta + 1$)
 - Pf. augmenting alternating paths.
- List coloring
- Chromatic polynomial

Colorings (cont.)

Problem

Let G be a k-critical graph. Show that if S is a separating set for G, then S does not induce a complete graph. Conclude that $|V(G)| \neq k + 1$.

Problem

Let G be a graph on n vertices and m edges. Show that the chromatic polynomial $P_G(k)$ is of the form $k^n - mk^{n-1} \dots$

Flows/Circulations

- *k*-flows $\Leftrightarrow \mathbb{Z}_k$ -flows \Leftrightarrow *H*-flows.
 - Pf. flip directions in the \mathbb{Z}_k -flow, flow polynomial.
- Various conditions for small flows.
- Seymour's 6-flow theorem.
 - Pf. find many even subgraphs and find a "3-flow" for the rest of the edges.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Current graphs (a type of nowhere-zero flow?)

Flows/Circulations (cont.)

Problem Find a 3-flow for ML₅.

Problem

Distribute the elements $1, \ldots, 6 \in \mathbb{Z}_{13}$ and give orientations to the edges of K_4 such that KCL holds in \mathbb{Z}_{13} . Why does this not give us a triangular embedding of K_{13} in some surface?

Extremal Graph Theory

- ► Turan (graph avoiding K_n with most edges is balanced complete (n − 1)-partite)
 - ▶ Pf. "duplicating a vertex" to get a complete multipartite graph

- Ramsey (R(s, t) is finite)
 - Pf. look at degree of any vertex and pigeonhole
- other subgraphs, minors, topological minors, etc.

Problem Compute $R(C_4, C_4)$.

Random graphs

- Findos-Renyi model $\mathcal{G}(n, p), \mathcal{G}(n, M)$
- Probabilistic method: union bound, linearity of expectation
 - ▶ $\Pr[X \lor Y] \le \Pr[X] + \Pr[Y], \mathbb{E}[aX + bY] = a\mathbb{E}[X] + b\mathbb{E}[Y]$
- Approximating MAX-CUT (factor of 1/2)
 - Pf. partition the vertices randomly
- Properties of almost all graphs
 - crucial that $n \to \infty$.

Problem

Is it true for all k that there is a tournament such that for every subset of k players, there's a player that beats all of them?

Random graphs

Problem

Is it true for all k that there is a tournament such that for every subset of k players, there's a player that beats all of them?

Proof.

Choose a random tournament on *n* vertices by assigning a random direction per edge with equal probability. Let I_S be the event that no vertex beats everyone in *S*. Then $\Pr[A_K] = (1 - 2^{-k})^{n-k}$, and

$$\Pr\left[\bigvee A_{K}\right] \leq \sum \Pr[A_{k}] = \binom{n}{k} (1-2^{-k})^{(n-k)}$$

which is less than 1 for sufficiently large n.

Embeddings on higher-order surfaces

Classification of orientable surfaces, Euler's formula

► V - E + F = 2 - 2g.

- Heawood inequality $\chi \leq (7 + \sqrt{1 + 48g})/2$
 - We saw a tight lower bound for $\chi = 12s + 7$.
- Genus under amalgamations.
 - additive w.r.t. bar amalgamations, vertex amalgamations, but not edge amalgamations

- Maximum genus (one-face embeddings)
 - Pf. find a splitting tree

Embeddings on higher-order surfaces

Problem

Let $\beta(G) = E - V + 1$ be the Betti number of G. Duke's conjecture states that if the genus of G is k, then $\beta(G) \ge 4k$.

Show there exists such a graph, i.e., demonstrating that this bound is best possible.

Show that this is false for a cubic graph of girth 12.

Embeddings on higher-order surfaces

Problem

Show that this is false for a cubic graph of girth 12.

Proof.

For a cubic graph $\beta(G) = V/2 + 1$. By the edge-face inequality, we have $2E \ge 12F$, so substituting it into the Euler equation yields

$$2 - 2g = V - E + F \le V - 5E/6 = -V/4$$

Rearranging yields $V/2 + 1 \le 4g - 3 < 4g$.