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loop is mentioned twice in the rotation at v. Let a “rotation system” on a
graph be an assignment of a rotation to each vertex and a designation of
orientation type for each edge. Then the preceding discussion can be sum-
marized by the following theorem, used extensively by Ringel in the 1950s.
The first formal proof was published by Stahl (1978).

Theorem 3.2.2.  Every rotation system on a graph G defines (up to equivalence
of imbeddings) a unique locally oriented graph imbedding G — S. Conversely,
every locally oriented graph imbedding G — S defines a rotation system for G.

O

3.2.4. Pure Rotation Systems and Orientable Surfaces

Let the graph G have an imbedding in an oriented surface S. If the 0-bands of
the associated band decomposition are given local orientations consistent with
the orientation of the surface S, then every 1-band will be orientation-preserv-
ing. Conversely, any rotation system for the graph G such that every edge has
type 0 induces an imbedding in an orientable surface (obtained by supplying
the 2-bands) and a specific orientation of that surface. Theorem 3.2.3 sum-
marizes this discussion. For the sake of brevity we define a “pure rotation
system” for a graph to be one in which every edge has type 0.

Theorem 3.2.3. FEvery pure rotation system for a graph G induces (up to
orientation-preserving equivalence of imbeddings) a unique imbedding of G into
an oriented surface. Conversely, every imbedding of a graph G into an oriented
surface induces a unique pure rotation system for G. O

Like Ringel (1974), we think it appropriate to ascribe credit for Theorem
3.2.3 jointly to Heffter (1891) and Edmonds (1960). See the Historical Note at
the end of the section.

3.2.5. Drawings of Rotation Systems

There is a particularly simple way to incorporate into a drawing of a graph a
rotation system for the graph: just be sure the clockwise order of the edges
incident on a vertex in the drawing agrees with the assigned rotation at the
vertex. The easiest way to do this is to draw first a dot for each vertex with
spokes radiating from the dot labeled in clockwise order according to the
rotation at the vertex. Then curves are drawn joining spokes with the same
label. Finally, all type-1 edges are marked with a cross. The resulting drawing
is called a “projection” of the given rotation. For instance, Figure 3.16 shows
a projection of the pure rotation system defined by the toroidal imbedding of
K, , minus a 1-factor given in Figure 3.10. For this projection a judicious
choice of the “under” edge at each crossing helps make the surface “ visible”.
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Figure 3.16. A rotation projection with no type-1 edges.

Figure 3.17. A rotation projection for K, and the corresponding reduced band decomposition.

If a given graph is simplicial, then the list format of a rotation system may
give adjacent vertices instead of edges. This is called the “vertex form of a
rotation system”. In this context, it is also natural to list only the sequence of
vertices in a boundary walk.

Example 3.2.4. The rotation system for K, whose projection is illustrated on the
left in Figure 3.17 can be given a list format in either the edge form or the vertex

form.

ctha u. x'wo

v. fad V. Xuw
w. dbe w. vux
x. efc x. wou'

The corresponding reduced band decomposition is given at the right. By tracing
along the boundary of this reduced band decomposition surface, one easily verifies
that the imbedding has two faces uvxwuxwvx and uvw in vertex form, or
afebcedfc and adb in edge form.

3.2.6. Tracing Faces

Given a rotation system for a graph, one frequently needs to obtain a listing or
enumeration of the boundary walks of the reduced faces. If the rotation
system is given by a projection, then the procedure is well illustrated in
Example 3.2.4. First, thicken each edge into a 1-band, and give the band a
twist if the edge is type 1. Then simply trace out, say with a pencil, the
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boundary components of the resulting surface. On the other hand, if the
rotation system is given in list format, for example, as computer input, then
this geometric method is impossible. Some thought about the geometric
method should convince the reader that the following Face Tracing Algorithm
is correct. We first introduce some helpful terminology. If the rotation at
vertex v is ...de... (up to a cyclic permutation), then we say that d is “the
edge before e at v”, that e is “the edge after d at v”, and that the edge pair
(d, e) is a “corner at v with second edge e”.

Face Tracing Algorithm. Assume that the given graph G has no 2-valent
vertices. Choose an initial vertex v, of G and a first edge e, incident on v,. Let v,
be the other endpoint of e, . The second edge e, in the boundary walk is the edge
after (resp., before) e, at v, if e, is type O (resp., type 1). If the edge e, is a
loop, then e, is the edge after (resp., before) the other occurrence of e, atv,. In
general, if the walk traced so far ends with edge e; at vertex v;, then the next
edge e, is the edge after (resp., before) e; at v; if the walk so far is type 0
(resp., type 1). The boundary walk is finished at edge e, if the next two edges in
the walk would be e, and e, again. To start a different boundary walk, begin at
the second edge of any corner that does not appear in any previously traced faces.
If there are no unused corners, then all faces have been traced.

Observe that the walk does not necessarily stop when the first edge e, is
encountered a second time; we might not be on the same side of e, as at the
beginning. The followup by the edge e, is what confirms that we are on the
original side of e, assuming of course that the vertex v, does not have valence
2 (see Exercise 14).

Example 3.2.5. Consider the rotation system

u. a'fbd'a'e'bc
v. cfg
w. eld'yg

Begin the first face at vertex u with the edge a at the corner (c, a). The next edge
in the boundary walk is d, the edge before (since the walk a is type 1) the other
occurrence of the edge a at the vertex u. The next edge is g, the edge after d
(since the walk ad is type 0) at the vertex w. The next edge is c. Since the
following two edges would be a and d again, the walk terminates with c, yielding
the face adgc. Since the corner (a, f) has not yet appeared, we can begin a
second boundary walk with edge f at vertex u. This time the face fgea is
obtained. The third and fourth faces bcf and deb are obtained in a similar
fashion by starting with edge b from corner ( f, b) and edge d from corner (b, d).
Figure 3.18 shows these four faces, first separately, then assembled together.
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Figure 3.18. The faces from Example 3.2.5 assembled into a Klein bottle, so that the local
orientations at vertices u, v, and w are correctly completed.

Example 3.2.6. The rotation system

t. d'bel
u. fd'a'
v. cthat
w. clelf

has as its faces the polygons dfe, bad, ecbh, and fca. When these faces are
assembled, they yield a 2-sphere. Thus, as we have mentioned, the existence of
orientation reversing edges need not mean that the surface is nonorientable,
provided that no cycle contains an odd number of orientation reversing edges.

3.2.7. Duality

Let B be a band decomposition of the surface S. Suppose each 2-band has
been given a specific orientation. The dual band decomposition of B, denoted
B*, is defined by letting the i-bands of B be the (2 — i)-bands of B*, for
i =0,1,2; the ends of each 1-band of B become the sides of the corre-
sponding 1-band of B* and vice versa. If G = S is the graph imbedding
associated with the decomposition B, then the imbedding associated with B*
is naturally the dual imbedding G* — S*.

Let e be an edge of the imbedding G — S associated with the decomposi-
tion B. The orientation type of the dual edge e* depends on the choice of
orientations for the 2-bands of the primal imbedding or, equivalently, on the
direction given to the closed walk around the boundary of each primal face.
The edge e appears twice in the course of listing all directed face boundaries.
If the two appearances have opposite directions, then the dual edge e* is type
0; otherwise it is type 1. Thus, in Example 3.2.4, if the directed boundaries are
uvxwuxwvx and uvw, then (ux)*, (vw)*, and (wx)* are type 0, whereas



