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Figure 3.36. A subdivision of the Kuratowski graph Kj ,
in the graph 4.

Figure 3.37. A rotation projection for the imbedding Y, — T.

face of the cellular imbedding A4, — S. Now suppose that images of all the
edges on the n other concentric cycles of the graph A, are deleted, and that
every resulting vertex of valence 2 is smoothed over. The result is a possibly
noncellular imbedding Y, — S. If every noncellular face of Y, — S is replaced
by a 2-cell, then one obtains the imbedding Y, — T whose rotation projection
is shown in Figure 3.37. Obviously, y(T) < y(S).

An elementary face-tracing argument shows that the imbedding Y, —» T
has only two faces, so that x(T) = 4n — 6n + 2 = 2 — 2n, which implies that
¥(T) = n. It follows that y(S) > n.

We conclude from this two-pronged inductive argument that y(A4,) > n.
Since there is only one outer face in the imbedding of A4, given by the rotation
projection of Figure 3.35, it follows from a calculation of Euler characteristic
that the imbedding surface has genus n. Thus y(4,) = n.

3.4.6. Maximum Genus

The simple formula ¥,,(G) = B(G) for maximum crosscap number is estab-
lished by Theorem 3.4.3. The problem of calculating the maximum genus
v, (G) is not so easily solved, but N. H. Xuong has demonstrated that it is still
much easier than computing the genus y(G). The immediate goal is to
determine which graphs have orientable one-face imbeddings. A survey of
results on maximum genus up to the time of Xuong’s characterization is given
by Ringeisen (1978).
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Two edges are called “adjacent” if they have a common endpoint.

Lemma 3.4.8. Let d and e be adjacent edges in a connected graph G such that
G — d — e is a connected graph having an orientable one-face imbedding. Then
the graph G has a one-face orientable imbedding.

Proof. Let V(d) = {u,v}, and let V(e) = {v, w}. First, extend the one-
face imbedding (G — d — e¢) » S to a two-face imbedding (G — ¢) » S by
placing the image of d across the single face. Of course, the vertex v lies on
both faces. Thus, if one attaches a handle from one face of (G —e) = S to
the other, one may then place the image of edge e so that it runs across the
handle, thereby creating a one-face imbedding G —» S’. O

Example 3.4.3. Consider the complete graph K ; as a Cayley graph with vertices
0,1,2,3,4. Then the spanning tree T with edges 01, 12, 23, and 34 has a
one-face imbedding in the sphere. By Lemma 3.4.8, the graph T' = T + 04 + 42
also has a one-face imbedding, as does the graph T" = T’ + 20 + 03, as does
Ks=T" + 31 + 14. Thus v, (K5) = 3.

Lemma 3.4.9. Let G be a connected graph such that every vertex has valence at
least 3, and let G have a one-face orientable imbedding G — S. Then there exist
adjacent edges d and e in G such that G — d — e has a one-face orientable
imbedding.

Proof. Let d be an edge of G whose two occurrences in the single
boundary walk of the imbedding G — S are the closest together, among all
edges of G. Then the boundary walk can be written in the form dAd~ B, where
no edge appears twice in the subwalk A. Since the graph G has no vertex of
valence 1, the subwalk A is nonempty, so that it has a first edge e. By case ii
of Theorem 3.3.5, edge-deletion surgery on edge d in the imbedding G — S
yields a two-face imbedding (G — d) — S’. The boundary walks of the two
faces are 4 and B, and the edge e appears in both 4 and B. Thus, by case i of
Theorem 3.3.5, the result of edge-deletion surgery on e in the imbedding
(G — d) = S’ is a one-face imbedding of G —d —e. O

The “deficiency (G, T) of a spanning tree” T for a connected graph G is
defined to be the number of components of G — T that have an odd number
of edges. The “deficiency £(G) of the graph” G is defined to be the minimum
of £(G, T) over all spanning trees T.

Example 3.4.4. On the left in Figure 3.38 is a spanning tree T for a graph G
such that £(G, T) = 3. On the right is a spanning tree T’ for the same graph G
such that §(G, T') = 1. Since the edge complement of any spanning tree for this
graph has 1 — 7 + 11 edges, an odd number, the deficiency of any spanning tree
must be at least one. Therefore £(G) = £(G,T') = 1.
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Figure 3.38. Two spanning trees for the same graph, one of deficiency 3, the other of de-
ficiency 1.

Lemma 3.4.10. Let T be a spanning tree for a graph G, and let d and e be a
pair of adjacent edges in G — T. If §(G —d —e,T) =0, then §(G,T) = 0.

Proof. Every component of G — d — e — T that meets either of the edges
d or e has an even number of edges, since §(G — d — e, T) = 0. The number
of edges in the component of G — T that contains the edges d and e is two
plus the sum of these even numbers. All the other components of G — T have
evenly many edges, asin G —d — e — T. Thus, §(G,T)=0. O

Lemma 3.4.11. Let G be a graph other than a tree, and let T be a spanning tree
such that £(G, T) = 0. Then there are adjacent edges d and e in G — T such that
§G—-d—-eT)=0.

Proof. Let H be a nontrivial component of G — T. Since H is connected
and has at least two edges, there are adjacent edges d and e in H such that
H — d — e has at most one nontrivial component. (See Exercise 16.) Thus,
§(G—-d-eT)=0. O

Theorem 3.4.12 (Xuong, 1979). Let G be a connected graph. Then G has a
one-face orientable imbedding if and only if §(G) = 0.

Proof. As the basis for an induction, one observes that if #E; = 0, then
both clauses of the conclusion are trivially true. Next, assume that the
conclusion holds for any graph with n or fewer edges, and let G be a graph
with n + 1 edges.

As a preliminary, suppose that G has a vertex v of valence 1 or 2, and let
G’ be the graph obtained by contracting an edge incident on vertex v. Then
obviously, the graph G has a one-face orientable imbedding if and only if the
graph G’ does. Also, £(G) = 0 if and only if §(G") = 0. Since the graph G’ has
one edge less than the graph G, it follows from the induction hypothesis that
G’ has a one-face orientable imbedding if and only if £(G’) = 0. The conclu-
sion follows immediately.

In the main case, every vertex of G has valence 3 or more. Suppose first
that G has a one-face orientable imbedding. By Lemma 3.4.9, there exist
adjacent edges d and e in G such that G — d — e has a one-face orientable
imbedding. It follows from the induction hypothesis that £(G —d — e) = 0,
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Figure 3.39. Two graphs that have deficiency 2.

so there is a spanning tree T in G — d — e such that §(G —d — ¢, T) = 0. Of
course, the tree T also spans G. By Lemma 3.4.10, it follows that £(G, T) = 0,
which implies that £(G) = 0.

Conversely in the main case, one may suppose that £(G) = 0, so that there
is a spanning tree T such that £(G, T) = 0. Since G has no vertex of valence
1, it is not a tree. By Lemma 3.4.11, it follows that there are adjacent edges d
and e in G — T such that §(G —d — e, T) = 0. Thus, £§(G — d — e¢) = 0. By
the induction hypothesis, the graph G — d — e¢ has a one-face orientable
imbedding. By Lemma 3.4.8, so does the graph G. O

Example 3.4.5. The dumbbell graph G on the left of Figure 3.39 has only one
spanning tree, from which it follows that £(G) = 2. It is easily verified that the
removal of any pair of adjacent edges from the graph G’ on the right of Figure
3.39, followed by a sequence of edge contractions to eliminate vertices of valence
1 or 2, yields the dumbbell graph. Therefore by Lemma 3.4.9, it follows that
B(G") = 2 also.

A graph is “k-edge-connected” if the removal of fewer than k edges from G
still leaves a connected graph. The two graphs in Example 3.4.5 can be
generalized to obtain 1-edge-connected and 2-edge-connected planar graphs
with arbitrarily large deficiency. On the other hand, Kundu (1974) and Jaeger
(1976) have shown that every 4-edge-connected graph G has a spanning tree T
whose edge complement G — T is connected. Thus if G is 4-edge-connected,
then £(G) = 0 or 1, according to whether B(G) is even or odd.

Theorem 3.4.13 (Xuong, 1979). Let G be a connected graph. Then the mini-
mum number of faces in any orientable imbedding of G is exactly §(G) + 1.

Proof. An equivalence to the conclusion is the statement that the graph G
has an orientable imbedding with n + 1 or fewer faces if and only if £(G) < n.
The proof of this equivalent statement is by induction on the number n. It
holds for n = 0, by Theorem 3.4.12, and we now assume that it holds for all
values of k less than n, where n > 0.

First, we suppose that G — S is an orientable imbedding with #F; = n + 1.
Then perform edge-deletion surgery on an edge e common to two faces of the
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imbedding G — S. By case i of Theorem 3.3.5, the resulting imbedding
(G — e) » S’ has n faces. From the induction hypothesis, it follows that
£(G — e) < n — 1. Therefore, £(G) < n.

Conversely, one may suppose that £(G) = n, so that there is a spanning
tree T in G such that £(G, T) = n. Let H be a component of G — T with an
odd number of edges. Certainly the subgraph H has an edge e that does not
disconnect H or such that one endpoint of e has valence 1 in H. Accordingly,
£(G — e, T) = n — 1. By the induction hypothesis, the graph G — ¢ has an
orientable imbedding with at most n faces. Therefore the graph G has an
orientable imbedding with at most n + 1 faces. O

Corollary (Xuong, 1979). Let g be a connected graph. Then v,,(G) =
3(B(G) — £(G)).

Proof Let g = v,,(G). Then 2 — 2g = #V — #E + (§(G) + 1), by The-
orem 3.4.13. It follows that g = 1(B(G) — £(G)). O

Example 3.4.6. Let T be the tree in the complete graph K, consisting of all
edges incident on a particular vertex. Then

0 if(ngl)iseven
‘E(K'nT): 1
1 if(”; )isodd

or equivalently,

_ [0 if n=1or 2modulo4
4K, T) {1 if n = 0 or 3modulo 4

It follows that v, (K,) = | B(K,)/2].

The obvious computational problem presented by Theorem 3.4.13 is to
calculate the deficiency of a graph. The number of spanning trees is exponen-
tial, and no polynomial-time algorithm was found in the immediate years after
Xuong published his characterization. Ultimately, Furst, Gross, and McGeoch
(1985a) developed a polynomial-time algorithm involving a reduction to
matroid parity.

3.4.7. Distribution of Genus and Face Sizes

Suppose that a graph G has vertices vy, ..., v, of respective valences d,, ..., d
Then the total number of orientable imbeddings is

ne

I1(d,- 1



