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The chromatic number of a surface S is equal to the maximum of the set of
chromatic numbers of simplicial graphs that can be imbedded in S, as we
recall from Section 1.5. Heawood (1890) showed that there is a finite maxi-
mum, even though there is no limit to the number of vertices of a graph that
can be imbedded in S. In particular, if the surface S has Euler characteristic
¢ <1, then

chr(S) < {————7 - @J

which is now known as the “Heawood inequality”. The value of the expression
on the right-hand side is called the “Heawood number” of the surface S and is
denoted H(S).

The determination of the chromatic numbers of the surfaces other than the
sphere is called the “Heawood problem”. Its solution, mainly by Ringel and
Youngs (1968), gave topological graph theory the critical momentum to
develop into an independent research area. The solution is that, except for the
Klein bottle, which has chromatic number 6, the chromatic number of every
surface equals the Heawood number. For example, the projective plane has
chromatic number 6 and the torus has chromatic number 7, exactly their
Heawood numbers. The idea of the proof is to imbed in each surface a
complete graph whose number of vertices equals the Heawood number of the
surface.

Since the sphere has Euler characteristic ¢ = 2, its Heawood number is 4.
However, Heawood’s argument for other surfaces cannot be used to establish
four as an upper bound for the chromatic number of the sphere. Although the
sphere is the least complicated closed surface, and although some of the most
distinguished mathematicians attempted to solve the problem, the chromatic
number of the sphere was the last to be known. This last case was resolved
when Appel and Haken (1976) established that chr(S,) = H(S,) = 4, which is
called the Four-Color Theorem. Since the proof of the Four-Color Theorem is
fully explained elsewhere, quite lengthy, and not topological in character, we
confine our attention to the Heawood problem.
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The original solution to the Heawood problem occupies about 300 journal
pages, spread over numerous separate articles, and it requires several different
kinds of current graphs, whose properties are individually derived. Ringel
(1974) has condensed this proof somewhat. Although Ringel considers every
case, it remains useful to refer to the original papers for complete details of
some of the more difficult cases (such as “orientable case 6”).

The introduction of voltage graphs and topological current graphs unifies
and simplifies the geometric part of the solution. However, the construction of
appropriate assignments of voltages or currents remains at about the same
level of difficulty as originally. The present review of the Heawood problem
concentrates on a representative sample of the cases whose solutions are most
readily generalizable to other imbedding problems.

5.1. THE HEAWOOD UPPER BOUND

The first step in calculating the chromatic numbers of all the closed surfaces
except the sphere is to derive the Heawood inequality. The second step is to
use Heawood’s inequality to reduce the Heawood problem to finding the genus
and the crosscap number of every complete graph. A computation of the genus
of each complete graph K, such that n = 7modulo 12 illustrates the basic
approach to completing the second step.

5.1.1. Average Valence

In order to establish an upper bound for the possible chromatic numbers of
graphs that can be imbedded in a surface S, the main concept needed is
average valence. By using the Euler characteristic, it is possible to show that
the average valence is bounded.

Theorem 5.1.1. Let S be a closed surface of Euler characteristic ¢, and let G be
a simplicial graph imbedded in S. Then

1 G)<6—- —

average valence(G) =

Proof. Whether or not the imbedding is a 2-cell imbedding, we know that
#V — #E+ #F > ¢

For a 2-cell imbedding, we have equality. Otherwise, we observe that all the
nonsimply connected regions could be subdivided into cellular regions by
adding edges to the graph G, thereby increasing #E without increasing #F.
From the edge-region inequality 2#FE > 3#F, established in Theorem 1.4.2,
we obtain an upper bound

#F < 2#E
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for #F, which we substitute into the previous inequality. This yields the
inequality

#V - J#HE > ¢
and its consequence
#E < 3#V - 3¢

By Theorem 1.1.1, the sum of the valences is equal to 2#E. Thus, the average
valence is 2#E/#V. Substituting the upper bound 3#V — 3¢ for #E, we
conclude that

6¢

1 G)<6—-—— O
average valence(G) pre

5.1.2. Chromatically Critical Graphs

A graph G is called “chromatically critical” if, no matter what edge is
removed, the chromatic number is decreased. Given any graph imbedded in S
whose chromatic number is that of the surface S, one can successively delete
edges until a chromatically critical graph imbedded in S is obtained. Obvi-
ously, every chromatically critical graph is simplicial and connected.

Theorem 5.1.2. Let S be a closed surface, and let G be a chromatically critical
graph such that chr(G) = chr(S). Then for every vertex v of G, chr(S) — 1 <
valence (v).

Proof. Suppose that v is a vertex of G with fewer than chr(S) — 1
neighbors. Since G is chromatically critical, its subgraph G — v can be colored
with chr(S) — 1 colors. At most chr(S) — 2 of these are assigned to neighbors
of v. This leaves one of those chr(S) — 1 colors available to color v, thereby
contradicting the fact that chr(G) = chr(S). O

Example 5.1.1. Since the projective plane N, has Euler characteristic c = 1, it
follows from Theorem 5.1.1 that any graph G imbedded in N, has a vertex of
valence five or less. From Theorem 5.1.2 it then follows that chr(N;) < 6. Figure
5.1 shows an imbedding of the complete graph K in the projective plane. Since
chr(K) = 6, it follows that chr(N,) = 6, as first proved by Tietze (1910).

Example 5.1.2. The torus S, has Euler characteristic c = 0. Thus, by Theorem
5.1.1, the average valence of a simplicial graph G imbeddable in S, is less than or
equal to 6. By Theorem 5.1.2, it follows that chr(S,) < 7. Figure 5.2 shows an
imbedding of the complete graph-K, in S,. Since chr(K;) = 7, it follows that
chr(S,) = 7, which was first proved by Heffter (1891).
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0
1 / x 2
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2 1
Figure 5.1. An imbedding of the complete graph K in the
0 projective plane N, .
0 1 2 3 4 5 6 0
2 3 4 5 6 0 1 2

Figure 5.2. An imbedding K; — S, is obtained by pasting the left side to the right side and then
pasting the top to the bottom with a 2 /7 twist.

Example 5.1.3. Like the torus, the Klein bottle N, has Euler characteristic
¢ = 0. By the same argument as for the torus it is proved that chr(N,) < 7.
Unlike the torus, however, the Klein bottle has chromatic number 6, one less
than its Heawood number, because—as we established in Theorem 3.4.6—the
crosscap number of K, is 3. This anomaly was discovered by Franklin (1934).

Theorem 5.1.3 (Heawood, 1890). Let S be a closed surface with Euler char-
acteristic ¢ < 1. Then

chr(S) < [—7 * @J

Proof. If ¢ =1, then the expression on the right-hand side of the in-
equality has the value 6, and the surface S is a projective plane, so that
chr(S) = 6, as we saw in Example 5.1.1. Thus the inequality holds.

If ¢ < 0, our immediate objective is to prove that the quadratic expression

chr(8)* — 7chr(S) + 6¢

is nonpositive. To this end, let G be a graph imbedded in S such that
chr(G) = chr(S), and such that G is chromatically critical. From Theorem
5.1.1, it follows that

6¢

l < —_
average valence(G) < 6 pre
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From Theorem 5.1.2, it follows that
average valence(G) > chr(S) — 1

Combining these two inequalities, we obtain the inequality

h -1<6-—
chr(S) < pry

Since ¢ < 0, we have —6¢c/#V < —6¢/chr(S), because #V > chr(S). Thus,
we infer

hr(S) - 1<6 bc
pa— < —_——

car - chr(S)

from which we immediately produce the inequality

chr(§)* = 7chr(S) + 6¢ < 0

By factoring the quadratic expression on the left-hand side we obtain

7 — V49 — 24c¢ 7 + V49 = 24¢
chr(§) — —————— || che($) - ————| <0

For ¢ < 0, the value of the expression 7 — V49 — 24c¢ is less than or equal to
0. Thus, the value of the first factor is positive. It follows that the value of the
second factor is nonpositive. Since chr(S) is an integer, the conclusion follows.

O

5.1.3. The Five-Color Theorem

If one substitutes ¢ = 2 into the Heawood inequality, one obtains the result
chr(S,) < 4. Even though Appel and Haken have subsequently proved this, it
does not follow from Heawood’s argument. Indeed, one of the purposes of
Heawood’s paper (1890) was to show the error in a purported proof by Kempe
(1879) that chr(S,;) < 4. What Heawood was able to prove about the sphere is
the following theorem.

Theorem 5.1.4 (Heawood, 1890). The chromatic number of the sphere S, is at
most 5.

Proof. Let G be a graph imbedded in S, such that chr(G) = chr(S;) and
that G is chromatically critical. By Theorem 5.1.1, the average valence of G is
less than 6, so that G must have a vertex v of valence less than or equal to 5.
By Theorem 5.1.2, the chromatic number of G is at most 6. Since G is



