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Figure 3.20. A rotation system for a cubic graph. Hollow dots have counterclockwise rotation.
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Figure 3.21. Two rotation projections.

Let G — S be an imbedding. Suppose that f; and f, are two distinct
faces of the imbedding whose boundaries share the edge e. Let G’ — S’
be the imbedding obtained from the rotation system for G —» S by
“giving the edge e an extra twist” (that is, by changing the orientation
type of e). Show that the imbedding G — S’ has one less face than the
imbedding G — S.

Use Exercise 10 to show that every connected graph has an imbedding
with only one face (Edmonds, 1965).

Let G be a regular graph of valence 3. Each vertex has exactly two
possible rotations. Thus a rotation system for G can be given from a
drawing of G in the plane by, say, a hollow dot for a vertex whose
rotation is counterclockwise in the drawing and a solid dot if clockwise.
How many faces are there in the rotation system given by this method in
Figure 3.20?

Two rotation projections are given in Figure 3.21. Choose a spanning tree
in each graph and reverse some vertex orientations so that each edge in
the spanning tree is type 0. Then determine which of the two surfaces is
orientable.

Show by an example that the procedure given in the Face Tracing
Algorithm for terminating a boundary walk may stop the walk too soon
if the vertex v, is 2-valent. Suggest a way of handling 2-valent vertices.

THE CLASSIFICATION OF SURFACES

It is a remarkable fact of low-dimensional topology that the surfaces
Sos S1» S;, ... form a complete set of representatives of the homeomorphism
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types of closed, connected, orientable surfaces, and moreover, that they are
distinguishable by a single integer-valued invariant, the Euler characteristic.
Similarly, the surfaces N, N,, N;,... form a complete set of representatives of
the homeomorphism types of closed, connected, nonorientable surfaces, and
they too are distinguishable by Euler characteristic.

The proof of the classification theorem is facilitated by a designation of
convenient models of the surfaces. As a model of S, we take the surface of an
unknotted g-holed solid doughnut in 3-space.

A “meridian” in this model is a topological loop on S, that bounds a disk
in the g-holed solid that does not separate the solid. The topological closure of
the complement of the g-holed solid is also a g-holed solid doughnut. A
“longitude” on S, is a topological loop that bounds a disk in the complemen-
tary solid that does not separate the complementary solid. Figure 3.22 shows a
three-holed solid doughnut and standard sets of meridians and longitudes.

As a model of N, we take the surface obtained from a sphere by first
deleting the interiors of k disjoint disks and then closing each resulting
boundary component with a Mobius band. No closed nonorientable surface is
imbeddable in 3-space.

The classifications are derived in three steps. The first step is to calculate an
Euler characteristic—relative to a particular cellular imbedding of a particular
graph—for each of the standard surfaces. Second, we show that the Euler
characteristic is an invariant of every standard surface, that is, it is indepen-
dent of the choice of a graph and of the choice of an imbedding (provided that
the imbedding is cellular).

Since the standard orientable surfaces have different Euler characteristics, it
follows from the second step that no two of them are homeomorphic.
Similarly, the nonorientable standard surfaces are pairwise distinct. In the
third step, we introduce the concept of “surgery” to prove that every closed
surface is homeomorphic to one of the standard surfaces.

longitudes

meridians

Figure 3.22. An unknotted 3-holed solid doughnut in 3-space, with standard meridians and
longitudes.
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3.3.1. Euler Characteristic Relative to an Imbedded Graph

The “(relative) Euler characteristic of a cellular imbedding” G — S of a
connected graph into a closed, connected surface is the value of the Euler
formula #V — #FE + #F, and it is denoted x(G — S). In the course of
proving the classification theorems we will prove that this number depends
only on the homeomorphism type of the surface S and not on the choice of a
graph G or its imbedding.

Theorem 3.3.1.  For each orientable surface S, (§ = 0,1,2,...) there exists a
connected graph G and a cellular imbedding G — S, whose Euler characteristic
satisfies the equation x(G = S,) =2 — 2g.

Proof. Theorem 1.4.1 implies this result for g = 0. For g > 0, let the
vertices of the graph G be the g intersection points of a standard set of g
meridian-longitude pairs on the surface S,. The edges of G include the g
meridians, the g longitudes, and a set of g — 1 “bridges” that run directly
between consecutive intersection points. Thus, the graph G has g vertices and
3g — 1 edges. One verifies by an induction on g that there is only one face
and that itis a 2-cell. It follows that x(G = S,) =g - (3g - 1) + 1 =2 - 2g.

O

Theorem 3.3.2. For each nonorientable surface N, (k = 0,1,2,...) there is a
graph G and a cellular imbedding of G into the surface N, such that x(G — N,)
=2-—k

Proof. For k = 0, this is true by Theorem 1.4.1. For k > 0, choose a point
on the center loop of each of the k crosscaps as a vertex of G. The edges of G
are the k center loops plus k — 1 bridges to link the vertices to each other.
Thus, there are k vertices and 2k — 1 edges. An induction argument on the
number k proves that there is only one face and that it is a 2-cell. Therefore,

x(G>N)=k—-(Q2k-1)+1=2-k. O

3.3.2. Invariance of Euler Characteristic

The choice in Theorem 3.3.1 and in Theorem 3.3.2 of particular cellular
imbeddings in the standard surfaces was designed to simplify the calculation
of their Euler characteristics. We shall now see that for every one of the
standard surfaces, the value of the Euler formula #V — #FE + #F is indepen-
dent of the selections of a graph and of a cellular imbedding.

It follows immediately from the invariance of the Euler characteristic of the
standard surfaces that they are mutually distinct, because if two orientable
surfaces differ in genus or if two nonorientable surfaces differ in crosscap
number, then they differ in Euler characteristic. Establishing the invariance of
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the Euler characteristic, and thereby, the distinctness of the standard surfaces,
is the second step in the classification of surfaces.

Theorem 3.3.3 (The Invariance of Euler Characteristic of Orientable Surfaces).
Let G = S, be a cellular imbedding, for any g = 0,1,2,... . Then x(G - S,)
=2-2g.

Proof. Theorem 1.4.1 implies that the conclusion holds for the sphere .
As an inductive hypothesis, assume that it holds for the surface S, and
suppose that the graph G is cellularly imbedded in S, ;.

First, draw a meridian on S, so that it meets the graph G in finitely many
points, each in the interior of some edge of G and each a proper intersection,
not a tangential intersection. If necessary, we subdivide edges of G so that no
edge of G crosses the meridian more than once, which does not change the
relative Euler characteristic of the imbedding into S, ;. Next thicken the
meridian to an annular region R, as illustrated in Figure 3.23.

A homeomorphic copy of S, can be obtained by excising from S, the
interior of region R and by then capping off the two holes with disks. We now
construct a cellular imbedding G” — S,. The vertex set of the graph G’ is the
union of the vertex set V; and the intersection set of G with the boundary of
R. If the graph G intersects the meridian in p places and if the region R is
selected to be adequately narrow, then #V, = #V; + 2p.

The edge set E. contains all the #E; — p edges of G that do not cross the
meridian. Furthermore, it contains the arc segments on the boundary compo-
nents of the region R that connect adjacent points of intersection of
boundary(R) and G. Since G intersects the meridian in p places, there are p
such arcs on each boundary component, for an additional subtotal of 2 p. The
edge set E. also contains the segments of edges of G that run from vertices of
G to intersections of G and boundary(R). There are 2 p such segments in all.
Thus,

#E; = (#E;—p) +2p +2p= #E;+ 3p

Figure 3.23. Thickening the meridian yields the shaded region R.
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Each face of the imbedding G — S, is cellular. It follows from the Jordan
curve theorem that each of the p subarcs of the meridian subtended by G,
considered in succession, cuts a region into two parts, thereby yielding p
additional faces in the imbedding G’ — - it follows that

Fop=#F;+p+2
Therefore, we may compute that
x(G = S,) = #V; — #Eg + #Fg,
(#V;+2p) — (#E;+3p) + (#F;+p +2)
#V, — #E, + #F;+ 2
x(G—S,,,) +2

According to the induction hypothesis,
x(G'>S,)=2-2g
We immediately infer that
x(G—S,,,)=-2g=2-2(g+1) O

Corollary. Let i and j be distinct nonnegative integers. Then the surfaces S; and
S, are not homeomorphic.

Proof. A homeomorphism f: S, — §; would carry a cellular imbedding
G — S; of relative Euler characteristic x(G — S;) =2 — 2i to a cellular
imbedding G — S; of relative Euler characteristic x(G — S;) =2 — 2i, in
violation of Theorem 3.3.3, which implies that x(G — S;) =2 -2,/ O

Theorem 3.3.4 (The Invariance of Euler Characteristic of Nonorientable
Surfaces). Let G — N, be a cellular imbedding, for any k = 0,1,2,... . Then
X(G—- N,)=2—k

Proof. The conclusion holds for the 2-sphere N, by Theorem 1.4.1. By
way of an induction, assume that it holds for the surface N,, and suppose that
the graph G is cellularly imbedded in N, ;.

The induction step here is analogous to the one for the orientable case. This
time draw a center loop on one of the crosscaps of N, so that it meets the
graph G in finitely many points, and subdivide some edges if needed, so that
no edge of G crosses that center loop more than once. Such subdivision does
not alter the relative Euler characteristic of the imbedding. When the center
loop is thickened, the result is a Mobius band B, rather than an annulus.
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A homeomorphic copy of N, can be obtained by excising from N, the
interior of the Mobius band B and then capping off the resulting hole with a
disk. Continuing the analogy, we construct an imbedding G’ — N,. If we
assume that the graph G intersects the center loop in p points, then the vertex
set V. contains #V; vertices from G plus 2 p points of intersection of G with
boundary(R).

The edge set E;. contains #E; + 3p edges, as before. However, since only
one hole results from excising the interior of the Mbius band B, the face set
F. contains #F; + p + 1 faces. It follows that

x(G = N,) = #V,, — #E; + #F,
= (#V;+2p) — (#E;+3p) + (#F;+p+ 1)
= #V, — #E; + #F; + 1
=x(G-> Nyyy) +1

The induction hypothesis implies that x(G — N,) = 2 — k, which enables us
to conclude that

x(G-> N, )=1-k=2—-(k+1) O

Corollary. Let i and j be distinct nonnegative integers. Then the surfaces N; and
N; are not homeomorphic. O

3.3.3. [Edge-Deletion Surgery and Edge Sliding

What remains to complete the classification of closed surfaces is the third step,
which is to prove that every closed surface is homeomorphic to one of the
standard surfaces. To accomplish this, we introduce some topological tech-
niques called “surgery”. This is the most difficult step in the classification.

Let G — S be a cellular imbedding of a graph in a surface, and let e be an
edge of G. To perform “edge-deletion surgery” at e, one first deletes from a
band decomposition (not reduced) for G — S the 2-band or 2-bands that meet
the e-band; one next deletes the e-band itself; and finally one closes the hole
or holes with one or two new 2-bands, as needed.

Remark 3.3.1. Suppose that the imbedding G — S induces the rotation system
R and that the imbedding G' — S’ results from edge-deletion surgery at edge e.
Then the rotation system R’ induced by G' — S’ can be obtained simply by
deleting both occurrences of edge e from R. For a rotation projection, this means
erasing the edge e. For a reduced band decomposition, it means deleting the
e-band.
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There are three different possible occurrences when the edge e is deleted,
which are called cases i, ii, and iii. The effect of the surgery depends on the
case.

i. The two sides of the edge e lie in different faces, f; and f,. Then
deleting the f-band, the f,-band, and the e-band leaves one hole,
which is closed off with one new 2-band.

ii. Face f is pasted to itself along edge e without a twist, so that deleting
the f-band and the e-band leaves two distinct holes (and possibly
disconnects the surface). These holes are closed off with two new
2-bands.

iii. Face f is pasted to itself with a twist along edge e, so that the union of
the f~band and the e-band is a M6bius band. Then deleting the f~band
and the e-band leaves only one hole, which is closed off with one new
2-band.

The following theorem follows immediately from the preceding description.

Theorem 3.3.5. Let G — S be a cellular graph imbedding, and let e be an edge
of the graph. Let F be the set of faces for G — S, and let F' be the set of faces of
the imbedding obtained by edge-deletion surgery at e. Then in case i, #F' =
#F — 1, and the resulting surface is homeomorphic to S; in case ii, #F' =
#F + 1, and in case ii, #F' = #F. O

Another variety of imbedding modification is simpler, since it changes only
the imbedded graph, not the surface. Let f be a face of an imbedding G — S,
let d and e be consecutive edges in the boundary walk of f with common
vertex v, and let ¥ and w be the other endpoints of d and e, respectively. To
“slide d along e”, one adds a new edge d’ from u to w and places its image
across face f so that it is adjacent to d in the rotation at u and adjacent to e
in the rotation at w, and one then removes edge d from the graph. This is
illustrated in Figure 3.24.

Figure 3.24. Sliding edge 4 along edge e.
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Remark 3.3.2. Suppose that the edge-sliding operation is performed on a locally
oriented surface. If edge d is type 0 and edge e is type 1, then the new edge d’
that results from sliding d along e is type 1.

3.3.4. Completeness of the Set of Orientable Models

The following lemma is a crucial ingredient of the proof that the surfaces
Sy, S1,... represent all the orientable types. We hope that its proof is
intuitively obvious.

Lemma 3.3.6. Let T be an orientable surface with two boundary components.
Let T, be an orientable surface obtained from T by identifying one end of a
1-band I X I to an arc in one boundary component and identifying the other end
to an arc in the other boundary component. Suppose that T, is another orientable
surface obtained from T in a similar way. Then T, and T, are homeomorphic.

Proof. Suppose that a; and b, are the arcs in boundary(7T") to which the
band for T, is attached, for i = 1,2. Then there is a homeomorphism of T to
itself taking a,; to a, and b, to b,. This homeomorphism can be extended to
the attached bands by the product structure of I X I, since neither band is
“twisted” (the surfaces T, T}, and T, are all orientable by assumption). The
result is a homeomorphism from 7; to 7,. O

Corollary. Let G = S and H — T be two different one-face imbeddings in
orientable surfaces, and let d and e be arbitrary edges of the graphs G and H,
respectively. If edge-deletion surgery at d and edge-deletion surgery at e yield
homeomorphic surfaces S’ and T', respectively, then the original surfaces S and
T are homeomorphic.

Proof. Surgery on an edge of a one-face imbedding in an orientable
surface must be of type ii. Thus, it follows from theorem 3.3.5 that the
imbeddings (G — d) = S’ and (H — e) = T’ both have two faces, so that
their reduced band decompositions have two boundary components. By Re-
mark 3.3.1 on edge-deletion surgery, one can obtain reduced band decomposi-
tions for the imbeddings G — S and H — T, respectively, simply by restoring
to each a band from one boundary component to the other. By Lemma 3.3.6,
the reduced band decompositions for G —» S and H — T are homeomorphic
surfaces. It follows from Lemma 3.2.1 that S and T are homeomorphic
surfaces. 0O

Example 3.3.1. It is not visually obvious that the two reduced band decomposi-
tion surfaces in Figure 3.25 are homeomorphic. However, one can easily verify
by tracing along the boundary walks that both surfaces have one boundary
component. Moreover, deleting band c from both yields two surfaces that have
two boundary components each and are obviously homeomorphic. It follows from
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a b ¢ d a b c d
m m

Figure 3.25. Homeomorphic reduced band decomposition surfaces.

Lemma 3.3.6 that the two surfaces illustrated are also homeomorphic. The
corollary implies that the imbedding surfaces induced by the rotation systems

v. abacbdcd and v. ababcedcd

are homeomorphic.

Theorem 3.3.7. Let G — S and H — T be cellular graph imbeddings into
closed, connected, orientable surfaces, such that x(G — S) = x(H — T). Then
the surfaces S and T are homeomorphic. Moreover, x(G — S) and x(H = T)
are even numbers less than or equal to 2.

Proof.  As the basis for an induction, suppose that #E; + #E, = 0. Then
the graphs G and H have only one vertex each, and the imbeddings G — S
and H — T have one face each. Hence, the surfaces S and T are both
2-spheres, and x(G - S)=x(H—>T) = 2.

Assume that the inclusion holds when #E; + #E, = n, and suppose that
G — S and H — T are imbeddings such that #E; + #E,; =n + 1. If the
imbedding G — S had more than one face, then the graph G would have an
edge e common to two faces. By case i of Theorem 3.3.5, the imbedding
(G — e) = S obtained by surgery at e would have Euler characteristic equal
to x(G — S). Thus, the conclusion would follow by induction. Therefore, one
may assume that the imbedding G — S has only one face. Likewise, one may
assume that the imbedding H — T also has only one face. Furthermore, the
same argument applied to the dual imbeddings permits one to assume that the
graphs G and H have but one vertex each.

Now let d and e be arbitrary edges of the graphs G and H, respectively,
and let G’ —» S’ and H' — T’ be the imbeddings that result from surgery at d
and e, respectively. Case ii of Theorem 3.3.5 implies that x(G' — S') =
Xx(G — S) + 2 and that x(H' - T") = x(H —» T) + 2. Thus, x(G' = §') =
x(H' = T"). Since G and H are both one-vertex graphs, it follows that G’,
H’, S’, and T’ are each connected. Therefore, by induction, x(G’ — S’) and
x(H' — T’) are even numbers less than 2, from which it follows that x(G — §)
and x(H — T') are even numbers less than 2. By induction, it follows that the
surfaces S’ and T’ are homeomorphic. By the corollary to Lemma 3.3.6, we
infer that the surfaces S and T are homeomorphic. O
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Corollary. Every closed, connected, orientable surface is homeomorphic to one
of the standard surfaces S, S, ... .

Proof. Let S be a closed, connected, orientable surface. By Theorem 3.3.7,
the surface S has a relative Euler characteristic x(G — §) that is even and
less than or equal to 2. (Indeed, Theorem 3.3.7 states that all the relative Euler
characteristics for S are even and less than or equal to 2.) Let g=
1 —-1/2-x(G — S). By Theorem 3.3.1, the surface S, has a relative Euler
characteristic x(H — S,) =2 —2g = x(G — S). It follows from Theorem
3.3.7 that S is homeomorphic to S,. O

3.3.5. Completeness of the Set of Nonorientable Models

The proof of the completeness of the set N;, N,,... is parallel to the
orientable case. It begins with an analogy to Lemma 3.3.6.

Lemma 3.3.8. Let T be a surface with one boundary component, and let T, be a
surface also with one boundary component, obtained from T by identifying the
ends of a 1-band to disjoint arcs in the boundary. Let T, be another surface with
one boundary component obtained from T in the same way. Then T, and T, are
homeomorphic.

Proof. The proof is essentially the same as that for Lemma 3.3.6, but this
time one may observe that both attached bands must have a “twist” so that
the surfaces 7, and T, still have only one boundary component. O

Corollary. Let G = S and H = T be two different one-face imbeddings, and
let d and e be arbitrary edges of the graphs G and H, respectively. If edge-dele-
tion surgery at d and edge-deletion surgery at e yield one-face imbeddings into
homeomorphic surfaces S’ and T', respectively, then the original surfaces S and
T are homeomorphic.

Proof. Since the surfaces S’ and T’ are homeomorphic, and since the
imbeddings (G — d) = S’ and (H — e) — T’ are both one-faced, the reduced
band decomposition surfaces for (G — d) —» S’ and for (H — e) —» T’ are
homeomorphic surfaces with one boundary component. By Remark 3.3.1 and
Lemma 3.3.8, it follows that the reduced band decomposition surfaces for
G — S and H — T are homeomorphic surfaces with one boundary compo-
nent each. Lemma 3.2.1 now implies that S and T are homeomorphic. O

Example 3.3.2.  Both the surfaces in Figure 3.26 have one boundary component.
Moreover, when the b-band is deleted from both, the resulting surfaces are
obviously homeomorphic. It follows from Lemma 3.3.8 that the two surfaces
illustrated are homeomorphic, even though this might not be immediately obvious.
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i s

Figure 3.26. Homeomorphic nonorientable reduced band decomposition surfaces.

The Corollary implies that the imbedding surfaces induced by the rotation systems
v. a'ba'b and v. a'a'b'b
are homeomorphic.

Theorem 3.39. Let G— S and H — T be cellular, locally oriented graph
imbeddings into closed, connected, nonorientable surfaces, such that x(G — §)
=x(H = T). Then the surfaces S and T are homeomorphic. Moreover,
x(G — S) and x(H — T) are less than or equal to 1.

Proof. As for orientable surfaces, the proof is by induction on the sum
#E; + #E,. The induction begins with #E; + #E, = 2, since by hypothe-
sis, the imbeddings G — S and H — T must have at least one type-1 edge
apiece. If the sum is 2, then in both graphs G and H, the single edge must be
an orientation-reversing loop. Thus, the reduced band decomposition surfaces
for the imbeddings G — S and H — T are both M&bius strips, from which it
follows that S and T are both homeomorphic to the projective plane N,. It
also follows that x(G » S)=x(H->T)=1-1+1=1.

Now suppose that the conclusion holds whenever #E; + #E, < n for
some n > 2. Furthermore, suppose that G — S and H — T are imbeddings
satisfying the hypotheses of the theorem and the condition #E; + #E, =n
+ 1. As in Theorem 3.3.7 a type-i edge-deletion surgery argument enables us
to assume that both G and H have one vertex and that both imbeddings
G — S and H — T have one face.

Since #E; + #E,; > 2 and since x(G— S)=x(H — T), both the
bouquets G and H have more than one loop. Since S and T are nonori-
entable, both imbeddings have at least one orientation-reversing loop. By
Remark 3.3.2 on edge sliding, it may be assumed that all the edges of G and H
are orientation-reversing loops.

Now let d and e be edges of the graphs G and H, respectively, whose duals
d* and e* are orientation-reversing loops in the respective dual imbeddings.
(Since the surfaces S and T are nonorientable, there must exist at least one
orientation-reversing loop in both of the respective dual imbeddings.) Next let
G' - S’ and H' - T’ be the imbeddings that result from edge-deletion
surgery at d and e, respectively. Since the dual loops d* and e* are both
orientation-reversing, it follows that both surgeries are type iii, which implies,
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by Theorem 3.3.5, that the resulting imbeddings G’ — S’ and H’ — T’ have
one face each.

The surfaces S’ and T’ are both nonorientable, since the original im-
beddings G — S and H — T had at least one orientation-reversing loop each
besides the deleted loops d and e, respectively. Since x(G' — S’) =
Xx(G = S)+ land x(H' =» T") = x(G » T) + 1, it follows that x(G’ — S")
= x(H' — T’). Moreover,

#E; + #E, = (#E;— 1)+ (#E,; — 1) = #E;+ #E,-2=n—-1<n
By the induction hypothesis, the surfaces S’ and T’ are homeomorphic, and
x(G'=8)=x(H ->T)<1

The corollary to Lemma 3.3.8 now implies that the surfaces S and T are
homeomorphic. Moreover,

x(G>8)=x(H->T)=x(G">S8)-1<0<1. O

Corollary. Every closed, connected, nonorientable surface is homeomorphic to
one of the standard surfaces Ny, N,, ... .

Proof. Let S be a closed, connected, nonorientable surface. By Theorem
3.3.2 it has a relative Euler characteristic x(G — S) less than or equal to 1.
Let k =2 — x(G — S). By Theorem 3.3.2, the surface N, has a relative Euler
characteristic x(H = N,) =2 — k = x(G — S). Theorem 3.3.7 implies that
S is homeomorphic to N,. O

Theorems 3.3.3 and 3.3.4 and the corollaries to Theorems 3.3.7 and 3.3.9
justify the definition of the “Euler characteristic” x(S) of a surface as the
value of the formula #V — #E + #F for any cellular imbedding. In particu-
lar, x(S,) =2 —2g and x(N,) =2 — k.

3.3.6. Exercises

1. For each of the three surfaces in Figure 3.27, decide whether it is
orientable, calculate its Euler characteristic, and state to which of the
standard surfaces S;, S;,... or N;, N,,... it is homeomorphic.

2. List the faces of the imbedding obtained by edge-deletion surgery on the
edge uv in the imbedding of Figure 3.17. List the faces obtained when
the surgery is on edge vw instead.

3. Let e be an edge of the imbedding G — S whose dual edge e* is not a
loop. Let the imbedding H — T be the result of surgery on e. Show that
the dual imbedding H* — T* can be obtained from the imbedding
G* — S* by contracting the edge e*.



