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13. Prove in regard to the corollary to Theorem 4.3.5 that the subgroup of
the covering transformation group 7 that leaves fixed a particular
prebranch point of x must be cyclic and generated by a conjugate of the
element b.

44. CURRENT GRAPHS

The historical origins of topological graph theory lie largely in map-coloring
problems concerned with the relationships between regions on a surface. From
our present perspective, it should not be surprising that duality plays a central
role. In fact, the main method used in the original solution of the Heawood
map-coloring problem is a dual form of the voltage graph called a “current
graph”. The precursors of this technique can be traced back through Ringel’s
work to Heffter (1891).

44.1. Ringel’s Generating Rows for Heffter’s Schemes

In trying to establish that the Heawood number for the surface S, is the
chromatic number, and not just an upper bound, Heffter (1891) sought the
minimal-genus surface consisting of n regions (faces), each of which is a
neighbor of all the others. Heffter did consider the problem simultaneously in
primal and dual forms, and he also wished to compute the genus of the
complete graph K,. To describe the surface, he started with n (n — 1)-sided
polygons, and he labeled them 1,2,..., n. The sides of polygon i were then
labeled by

1,2,...,i—1,i+1,...,n

to indicate where the neighboring polygons should be attached. Figure 4.17,
which is taken from Heffter’s paper, illustrates this procedure for a surface
with five regions. The identifications along the sides of polygon 1 have already
been made. When the remaining sides are pasted together, the segments 4B
and DC are identified as are the segments AD and BC, thereby yielding a
torus.

For the most part, Heffter did not depend on pictures and, instead, gave a
“table” of n rows, in which row i lists in cyclic order the labels for the sides of
polygon i. The table he gave for the preceding example of five regions was

(1) 3245
(2) 4351
(3) 5412
(4) 1523

(5) 2134
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Figure 4.17. Five labeled polygons.

We now recognize such a table as a rotation system for an imbedding of the
complete graph K, to which the mapping of Figure 4.17 is a dual. Heffter
showed how the cycle of polygons meeting at a vertex can be recovered from
the table; that is, he gave a face tracing algorithm for the imbedding of X,,.
Having thus realized the “purely arithmetical nature of the problem”, he
constructed tables yielding minimal imbeddings of K, for all n < 12. Al-
though Ringel was well aware of Heffter’s methods, their present popularity
evidently rose because of the abstract of Edmonds (1960).

In addition to the use of duality and the introduction of rotation systems, it
is especially noteworthy that Heffter gave tables for K,, n = 5,6, 7, in which
row i + 1 was obtained by adding 1 modulo n to the numbers of row i. Heffter
proved that such conveniently generated tables exist for general n > 6 only if
n is of the form 12s + 7, and he constructed them in the cases in which 4s + 3
is prime and 2* is not congruent to +1modulo4s + 3 for 0 < k < 125 + 1.
(It is still not known whether there are infinitely many such s.) These tables
generated from a single row using the cyclic group £, have ultimately evolved
into voltage graphs. For example, the table given above for n = 5 is precisely
the derived rotation system for the voltage graph of Example 4.1.3.

When Ringel began his work on the genus of complete graphs, he also
chose to describe surfaces with tables like Heffter’s, calling them “schemes”.
In an important generalization of Heffter’s work, he designed the strategy of
letting most of the rows of the scheme be generated from a small number of
rows. Unlike Heffter, however, he had spectacular success with this technique.
For instance, Ringel (1961) obtained the minimal imbedding of K, for all n of
the form 12s + 7, by constructing a single generating row for the scheme that
Heffter had been unable to obtain without restricting s. Despite Ringel’s
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Figure 4.18. A current graph with currents in 2.

particular brilliance in constructing such generating rows, a general method to
find them was still lacking. Such a method was ultimately provided in
rudimentary form by Gustin (1963).

4.4.2. Gustin’s Combinatorial Current Graphs

Gustin began with a planar drawing of a graph G. At each vertex he assigned a
direction, clockwise or counterclockwise. This led to what Gustin thought of as
flows within the graph, which we now recognize as face boundaries. Each edge
was assigned a direction and a “current”, by which he meant an element of
some group .

Example 4.4.1. The current graph in Figure 4.18 leads to a single generating
row for a triangular imbedding of the complete graph K4 in the surface S,,. To
get that row (in our present notation), write the vertex v, at the left, which is to
show which vertex has the rotation specified by the row. Then proceed as follows.

Start at any directed edge, for instance, the one labeled with current
9 modulo19. Write that current as the subscript on the first vertex in the row.
(Since the resulting graph will have no multiple edges, the entries in the rows of
the scheme can be vertices, rather than directed edges.)

At the end of that first directed edge is a filled vertex, indicating that the
second edge is to be obtained by moving in a clockwise direction. That is, the
directed edge with current 7 is next, so write v, next in the generating row.
Continue in this manner, going clockwise at every solid vertex (e) and counter-
clockwise at every hollow vertex (o), until every edge has been traversed in both
directions. When proceeding in the minus direction on an edge, one writes the
additive inverse modulo19 of the current shown on the plus direction. The
resulting generating row is

Ug. UgUqUg030130;15014011 V1804017019 V16 Us V1 V1202 Vg
The next row is
V1. U1 UgUg U V1401605 V15 Ug Us Uyg Uy Uyq Ug Uy Vg3 U304

In general, the subscript on the jth entry in row v, is obtained by adding
imodulo19 to the subscript on the jth entry of row v,.
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Gustin imposed a number of rules on the graph, on the assignment of
rotations, and on the assignment of currents, whose total effect is to guarantee
that the resulting scheme described an imbedding of a Cayley graph for the
current group. The Kirchhoff current law (KCL) is that the sum (or product,
for nonabelian currents) of the currents leaving each vertex is the group
identity. Gustin’s requirement that the graph be regular and that every vertex
satisfy KCL has the effect of ensuring that every face in the resulting
imbedding has the same number of sides as the valence of every vertex in the
current graph.

Gustin’s current graphs were regarded as computational tools (‘“nomo-
grams” in Youngs’s terminology) to aid in the construction of generating rows
for schemes. Progressively more constructive power was obtained over the next
few years as Gustin’s original rules were relaxed. Very importantly, Youngs
(1967) explained how to use current graphs with excess currents at some
vertices. Whereas Gustin (1963) discussed only the cases of one, two, or three
generating rows, Jacques (1969) gave a general exposition, still restricted to
Cayley graphs, but covering the possibility of arbitrarily many generating
rows. Finally, Gross and Alpert (1973, 1974) showed how a topological
viewpoint makes it possible to eliminate all of Gustin’s restrictions, and they
unified all previously defined kinds of current graphs into the one now
described.

4.4.3. Orientable Topological Current Graphs

Let G —» S be an imbedding in an oriented surface. An “(ordinary) current
assignment” is a function B from the set of directed edges of G into a group #
such that B(e”) = B(e*)™! for every edge e. The values of B are called
“currents” and % is called the “current group”. The pair (G — S, B8) is called
a current graph. If the clockwise and counterclockwise directions used by
Gustin to order the entries in a generating row are reinterpreted as vertex
rotations, the result is a legitimate imbedding. Hence, Gustin’s combinatorial
current graphs are properly considered a special case of a topological covering
space construction.

The point of assigning currents to an imbedding is to obtain a “derived
graph G,” and “derived imbedding Gg — Sp”. The vertex set of G, is the
cartesian product F; X %, and the edge set is the product E; X #. Thus,
vertices of the derived graph correspond to faces of the current graph, as in
Gustin’s construction. Endpoints and plus directions of derived edges are
given as follows. The plus direction of the derived edge (e, b) has initial vertex
(f, b) and terminal vertex (g, bc), where the rotation at the initial vertex of
the directed edge e* carries face f to face g and B(e*) = c. Thus, the
directed edge (e, b)~ goes from the vertex (g, bc) to the vertex ( f, b). It will
be notationally convenient to refer sometimes to the directed edge (e, bc™1)~,
which goes from vertex (g, b) to vertex (f, bc™1), as (e”, b); also, we let
(e, b) stand for (e, b)*. The rotation system for the derived imbedding is
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obtained by lifting boundary walks of the imbedding G — S, as follows. If the
directed boundary walk of face f is

el(l e2(2 e @
then the rotation at vertex ( f, b) is

(e1, b)) (€5, by)2 -+ (e,, b,)*

where b, = b if ¢,= +, and b, = bB(e,;”) if ¢, = —. This rotation is more
easily denoted

(e,9,b) (e,%,b) -+ (e, b).

Observe that the rotation at vertex (f, ab) is obtained from the rotation at
vertex ( f, b) by multiplying all # coordinates on the left by a.

Example 4.4.1 Revisited. For j=1,...,9, let e g be the edge whose plus
direction carries the current j. Gustin’s method of obtaining a generating row is
clearly no more than an application of the Face Tracing Algorithm. Thus the base
imbedding G — S has one face whose directed boundary walk is

ege,ege5€c €4 ...

Denote this face by v. For j=1,...,9 and i =1,...,19, the derived edge
(e;, i)™ runs from vertex (v, i) to vertex (v, i + j). Thus, the derived graph is
the complete graph K 4. The rotation at vertex (v,0) is

(0,0). (e9,0)(e;,0) (e5,0) (e5,0) (e5,13) " (e4,15)" ...

Since the derived graph is simplicial, this rotation can also be given in vertex
form. If we let v, = (v, i), the result is

Ug. UVgUqUgV301305 ...

which is the generating row given by Gustin’s construction. Moreover, the full
rotation system is also the same as Gustin’s scheme, since the rotation at vertex v,
is obtained from that at vertex v, by adding imodulo19 to all # coordinates.

Example 4.4.2 (Jungerman, 1975). Consider the current graph (G — S, B)
given by Figure 4.19, where the current group is %,,. An application of the Face
Tracing Algorithm shows that the base imbedding has two faces, which we denote
u and'v, and that vertices u, and v, of the derived imbedding have the following
rotations:

Upg. V3U U 5UG U, Vs V) Vg3 Uyq0) UpgUg
Up. U3 VyqUgUps U 306 U Uy Us Vg Uq Uy
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Figure 4.19. A current graph with currents in 2.

w

An inspection of these two rows reveals that the vertex u; is adjacent to the vertex
v, if and only if j — i is odd, and that u; is adjacent to u; (similarly v; and v;) if
and only if j — i =2 mod4. It follows that {u; i even} U {v;: j odd} is the
vertex set for one component of the derived graph. In this component, every pair
of vertices is adjacent except u; and u;, where j — i = 0mod 4 and v; and v;,
where j — i = 0 mod 4. Thus, this component is isomorphic to the complete
multipartite graph K, 4 4 4. The other 16 vertices of the derived graph lie in a
second copy of K4 4 4.4-

4.4.4. Faces of the Derived Graph

Just as the vertices of a derived graph correspond to the faces of its current
graph, faces of a derived graph correspond to vertices of its current graph. The
proof of the following theorem is postponed to the next section, where it is
shown to be a simple consequence of the duality between current and voltage
graphs. Originally, the theorem was proved by an application of the Face
Tracing Algorithm to the derived imbedding.

Theorem 4.4.1 (Gross and Alpert, 1974). Let e, ... e, be the rotation at
vertex v of the current graph (G — S, B), and let c; be the current carried by the
direction of the edge e; that has v as its initial vertex. Letc =c¢, ... c,, and let r
be the order of c in the current group %. Then the derived imbedding has #%/r
faces corresponding to vertex v, each of size rn, and each of the form

(e,,b),(e,?, bey), (€52, beyey) ... (e, beyey ... ¢,_1)
(e,, be), (e,2, beey ), (€553, beeye,) ..

(e,r,bc") = (e,,b) D

The product ¢, ... ¢, in Theorem 4.4.1 is called the excess current at vertex
v. The Kirchhoff current law (KCL) holds at vertex v if the excess current is
the identity.
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Figure 4.20. A current graph with currents in 2.

Corollary. Let (G — S, B) be a current graph such that KCL holds at every
vertex and every vertex has valence three. Then the derived imbedding is
triangular. O

Since KCL holds at every vertex in both Example 4.4.1 and Example 4.4.2,
both derived imbeddings are triangular. Thus the first gives a minimal-genus
imbedding of Ky, whereas the second gives a minimal-genus imbedding of

K444

Example 4.4.3. The current graph given in Figure 4.20 with currents in Z¢ has
one face, denoted v. By face tracing, we see that the rotation at vertex v, of the
derived imbedding is

Up- Uy U4 Up U5 U504

The order of the excess current at the bottom vertex of the current graph is 2. If
we excise the resulting three digons of the derived imbedding and reclose the
surface by identifying opposite sides, we thereby identify three pairs of multiple
edges from v, to v, 5, for i =1,2,3. The final product is an imbedding of the
complete graph K. The 3-valent vertex of the current graph satisfies KCL and it
generates six triangles, and the two remaining 1-valent vertices together yield one
hexagon and two triangles. Thus, the Euler characteristic of the derived surface is
6 — 15 + 9 = 0. The scheme whose generating row is the given rotation for v,
with the extra v, deleted is precisely the table Heffter gives for his minimal-genus
imbedding of K.

Example 4.4.4. Consider the current graph given in Figure 4.21 with currents in
the cyclic group Z,y,. There are two faces, which we denote u and v. In the
derived graph, there is an edge between u; and v, for all i, and there are no
other edges. Therefore the derived graph has two components; the vertex set of
one component is

{u;:ieven} U {v;: jodd}
Each vertex of the current graph has excess current +2 and valence 2, and

thereby generates a pair of 100-gons; each of these 100-gons passes through every
vertex in its component. Add a vertex inside each of the six 100-gons of one
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Figure 4.21. A current graph with currents in 2.

component, and add edges joining that vertex to the 100 original vertices. Then
delete all the original edges. The resulting graph is the complete bipartite graph
K¢ 100, and every face of the resulting imbedding is a quadrilateral. Hence the
imbedding has minimal genus.

Clearly, Example 4.4.4 generalizes to arbitrary even integers m and n,
yielding quadrilateral and hence minimal-genus imbeddings of K,, , for these
cases. Exercise 11 shows how quadrilateral imbeddings of K, , can be
obtained when m is odd and n = 2mod 4.

n

4.4.5. Nonorientable Current Graphs

It is possible to consider current graphs in nonorientable surfaces as well. The
difficulty is that vertex rotations are reversed by type-1 edges during the Face
Tracing Algorithm, so care must be taken in using vertex rotations to define
the derived graph. For instance, suppose that e is a type-1 edge lying between
faces f and g, as illustrated in Figure 4.22. Unlike the orientable case, the
rotation at either endpoint of edge e sends face f to face g. If e* carries
current ¢ and e~ were to carry current ¢, then in the derived graph, there
would be edges corresponding to e running from vertex (f, b) to both of the
vertices (g, bc) and (g, be~1). Therefore, both directions of a type-1 edge must
be assigned the same current. Also, in tracing faces of the derived graph, the
edge e is traversed in the same direction twice; it follows that in computing
the excess currents at the endpoints of edge e, the current ¢ must be used
twice. Thus type-1 edges in nonorientable current graphs (“cascades” in
Youngs’s terminology) appear in print with arrows in both directions.

\J4
1
A

@ Figure 4.22. A type-1 edge.
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problem. However, only orientable case 7 admits such a direct construction,
and even in that case, it requires considerable ingenuity to assign the voltages
correctly to the imbedded base graph. Each of the other three regular orient-
able cases requires a few additional tactics beyond the basic strategy.

5.2.1. A Base Imbedding for Orientable Case 7

Suppose that n = 125 + 7. Then the complete graph K, has 12s + 7 vertices
and (12s + 7)(6s+ 3) edges. Our objective is to construct an imbedding with
(12s + 7)(4s + 2) faces, every one a triangle. The greatest common divisor of
these three numbers is 12s + 7, so the obvious approach is to consider a base
graph imbedding such that

#V=1 #E=6s+3 and #F=4s+2

that is, an imbedding of the bouquet B, , in the surface S, ;.

There is little trouble in constructing candidates for a base imbedding, if
one generalizes a construction for surfaces already considered in Figure 4.31.
In that figure, opposite sides of an octagon are pasted to each other to produce
the surface S,. In general, the opposite sides of a 4g-sided polygon can be
pasted together to yield the surface S,. To prove that this works, one considers
the corners of the polygon to be vertices of a graph and the sides of the
polygon to be edges. The result of the pasting leaves 2g edges and one face,
obviously. It is not difficult to verify that it also leaves only one vertex. (See
Exercises 1-3.) Thus the result is the bouquet B,, imbedded in the orientable
surface of Euler characteristic 1 — 2g + 1, that is, the surface S,

To obtain an imbedding of the bouquet By, in the surface S,,,, one
begins with a (4s + 4)-sided polygon. When each side is pasted to the opposite
side, the result is an imbedding B,,,, — S, . If one now draws a line from
one corner of the (4s + 4)-sided face to each of the other 4s + 1 corners to
which it is not adjacent, one obtains an imbedding B ,; — S,.,. The
scallop-shell appearance of this imbedding is illustrated in Figure 5.4.

Ordinarily one tries to choose the voltage group to be cyclic, since cyclic
groups are the least complicated. In this case, since the covering space to be
constructed is (12s + 7)-sheeted, the obvious candidate for a voltage group is
%1254 7- Moreover, since numbers of the form 12s + 7 can be prime, the only
hope to lift some of the scallop-shell base imbeddings to triangular imbeddings
of complete graphs is with cyclic voltage groups.

Any one-to-one assignment of the voltages 1,...,6s + 3modulo12s + 7 to
the edges of the bouquet B, , yields K,,,,, as the derived graph. However,
they must be assigned so that the Kirchhoff voltage law holds globally, else the
derived imbedding would not be a triangulation. There is no known general
reason to suppose that a particular problem of this kind can be solved at all.
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Figure 54. Imbeddings By — S, and B;s — S; . These are base graphs for imbeddings K9 — S,
and Kj — Sq4.

Alternatively, one may observe that the global Kirchhoff voltage law corre-
sponds to a system of 4s + 2 linear equations in 6s + 3 unknown edge-voltages,
which would seem to have many solutions. However, the requirement that
each of the voltages 1,...,6s + 3 be used exactly once corresponds to an
inequality '

l—[(x,- - xj) #0
[

s+3

of degree (6 5
routine application of general methods.

. Accordingly, one does not expect to find a solution by the

5.2.2. Using a Coil to Assign Voltages

To obtain a satisfactory voltage assignment for the scallop shell base imbed-
ding, the voltages 1,...,6s + 3modulo 12s + 7 are first partitioned into three
intervals. Voltages 1, ...,2s in the lower range are distributed along the rim of
the shell in consecutive clockwise order, with plus edge directions assigned so
they alternate. The voltage 2s + 1 is assigned to the middle interior edge.
Voltages 2s + 2,...,4s + 2 in the middle range are assigned to the right half
of the shell, and voltages 4s + 3,...,6s + 3 are assigned to the left half.
Figure 5.5 shows the way that they are assigned.

The relationship between the voltages 1,...,2s in the lower range and the
voltages 2s + 2,...,4s + 2 in the middle range is called a “coil”. Note first
that the voltage 3s + 2 in the precise middle of the middle range is assigned to
the top edge of the scallop shell. The first outer voltage to follow 3s + 2 is the
voltage 1, and the plus direction of its edge is opposite to that of the top edge.
Thus, the top triangle will satisfy KVL if and only if 3s + 1 is assigned to its



Quotients of Complete-Graph Imbeddings and Some Variations 227

3s+2

Figure 5.5. This assignment of voltages in Z7,,,, to the imbedded bouquet By, ; — S,
satisfies KVL and yields as a derived graph a triangular imbedding Ki,, .7 = Sj125+7)-

other edge. Since the voltage 2 is assigned to the outer edge of the second
triangle from the top, in the same direction as the voltage 3s + 1, that triangle
will satisfy KVL if its other edge is assigned the voltage 3s + 3. In this manner
the voltages 1,...,2s are used to coil from the middle voltage 3s + 2 in the
middle range outward to the limiting voltages 2s + 2 and 4s + 2. Figure 5.6
shows a combinatorial abstraction of the coil.

2s—1
Figure 5.6. The voltages 1,...,2s are used to coil outward from 3s + 2 toward 2s + 1 and
4s + 2.



228 Map Colorings

voltages
inZ; 19
2
voltages
3 O E inZy 2

2
(a)

(b)

voltages

in .5'2’31

(c)
Figure 5.7. Imbedded voltage graphs that yield triangular imbeddings of (a) K5, (b) K9, and
(c) Ky .

Because of the way the scallop shell is to be pasted together to form a
closed surface, the lower voltages 1,...,2s also appear on the left rim. There
they coil among the upper voltages 4s + 3,...,6s + 3, starting from Ss + 3
on the vertical interior edge and working outward. The result is that KVL also
holds on the triangles on the left side of the shell.

The voltage 2s + 1 on the middle interior edge welds the two coils together,
so that KVL is also satisfied on the two triangular faces in which it lies. Thus,
KVL holds globally, and the Heawood problem is solved for orientable case 7.
Figure 5.7 shows the voltage assignments for imbeddings B, — S;, By — S,,
and B,; — S, that have derived triangular imbeddings K, = S;, K;g = S,
and K, — Sg3, respectively.
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Figure 5.8. A Gustin current graph for K3, .

5.2.3. A Current-Graph Perspective on Case 7

If one now draws the dual of the imbedded voltage graph in Figure 5.7, one
obtains precisely the topological current graph already illustrated in Figure
4.31. The underlying graph is planar and 3-regular, so that it is also possible to
draw an equivalent Gustin current graph in the plane, with no edge-crossings.
Such a Gustin current graph appears in Figure 4.18. Figure 5.8 shows the
Gustin current graph that is equivalent to the imbedded voltage graph in
Figure 5.7c.

The coiling relationship among the currents is highly visible in this ladder-
like Gustin current graph. It is also easy to see that KCL is satisfied at every
vertex. This ease of visibility makes Gustin current graphs very useful in
computations. On the other hand, while the base graph imbedding for the
voltage graph solution is designed to have one vertex, it requires a certain
amount of work to check the corresponding face in the Gustin current graph.

e clockwise
12 o counterclockwise
— 13
1
— —r 8
7
J/

Figure 5.9. Pictorial representation of the Face Tracing Algorithm.
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Figure 5.10. A general current graph for orientable case 7 of the Heawood problem.

Fortunately, there is a pictorial way to apply the Face Tracing Algorithm,
illustrated in Figure 5.9.

One may start at any edge. In this example, we have started with the
horizontal edge at the upper left, which carries the current 11. Since the
terminal vertex of that edge is solid, the next edge we traverse is the one
carrying the current 14. When this single edge orbit closes on itself, every edge
has been traversed in both directions. Thus, the corresponding imbedding has
only one face. The thin line that runs along the edges in Figure 5.9 traces out
the boundary circuit of that face.

The general voltage graph for orientable case 7, shown in Figure 5.5, also
has a dual that may be represented as a ladderlike Gustin current graph. This
is shown in Figure 5.10. Ringel (1961) solved this case with purely combina-
torial methods. The generating row he devised anticipates the technique of
coiling.

5.2.4. Orientable Case 4: Doubling 1-Factors

If n=12s + 4, then the complete graph K, has 12s + 4 vertices and
(6s + 2)(8s + 2) triangular faces. Since the greatest common divisor of these
three numbers is 6s + 2, the obvious properties one might want in an
imbedded voltage graph are 2 vertices, 12s + 3 edges, and 8s + 2 triangular
faces. Unfortunately, the complete graph K, , cannot have such a quotient.

Theorem 5.2.1 (Gross and Tucker, 1974). Let p: K, — G be a covering
projection. Then the cardinality of the fibers is an odd number.

Proof. Let v be a vertex of the base graph G. Suppose that there are 2n
vertices in the fiber over v. Then the subgraph of G spanned by these 2n
vertices is isomorphic to K,, and contains n(2n — 1) edges. These n(2n — 1)
edges must be the union of the fibers of v-based loops. However, every edge
fiber contains 2n edges, and 2n does not divide n(2n — 1), a contradiction.

O



