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3.2. Rotation systems

In this section we focus on 2-cell embeddings in orientable surfaces
and define their local clockwise ordering. First we observe that 2-cell em-
beddings can be formed without requesting that the sides of the polygons
are of unit length. It is sufficient that the sides are simple polygonal arcs.
Identifying such sides pair by pair also produces surfaces with 2-cell em-
bedded multigraphs. Note that this generalized construction allows also
polygons with just one or just two sides.

We now point out how any connected multigraph with at least one
edge can be 2-cell embedded. This idea, which is attributed to Heffter
[He891| and Edmonds [Ed60], will play a crucial role in the next chapters.
Let G be a connected multigraph with at least one edge. Suppose that
we have, for each v € V(G), a cyclic permutation 7, of edges incident
with v. Let us consider an edge e; v1v2 and the closed walk W =
vie1Ugeav3  Urexrv; which is determined by the requirement that, for
i=1, .,k,wehavem,,,(e;) =e;y1 where ex41 = e; (and k is minimal).
We should explain why there exists an integer k such that e, = e;. Since
G is finite, W cannot be infinite without repetition of an edge in the same
direction. It is easy to see that the first edge repeated in the same direction
is e;. (Note however, that some edges e; may occur in W traversed also
in the direction from v;,; to v;.) We shall not distinguish between W and
its cyclic shifts. If 7 = {m, | v € V(G)}, then we call W a m-walk. For
each m-walk we take a polygon in the plane with k sides (where k is the
length of the walk) so that it is disjoint from the other polygons, and we
call it a m-polygon. Now we take all w-polygons. Each edge of G appears
exactly twice in m-walks and this determines orientations of the sides of
the 7-polygons. By identifying each side with its mate we obtain a 2-cell
embedding whose multigraph is isomorphic to G.

We claim that the resulting surface S is orientable. It suffices to show
that the surface does not contain a simple closed polygonal curve C such
that, when we traverse C, left and right interchange. Since we are working
with m-polygons in the plane, it makes sense to speak of a point “close to”
a closed polygonal arc C on the left side of C when a positive direction is
assigned to C. Now we only have to check that walking “close to P” on
S will never take us from the left side of P to the right side. We leave the
details to the reader.

This construction shows that every connected multigraph with at least
one edge admits a 2-cell embedding in some orientable surface.

An embedding? of G in S is cellular if every face of G is homeomorphic
to an open disc in R? It is clear that every 2-cell embedding is cellular,
and we shall prove below (Theorem 3.2.4) that also the converse is true

4Embeddings of graphs in topological spaces and the notion of a face of an em-
bedding are defined in Section 2.1.
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in the sense that every cellular embedding is homeomorphic to a 2-cell
embedding. To prove that, we need some basic results on the plane R?

Let C be a simple closed polygonal curve in R?, let q1,...,qx € C
(k> 1) and p € int(C). Let Py,.. , Px be simple polygonal arcs in int(C)
such that P; connects p and ¢; for i = 1,. |k, and P, N P; = {p} for
1< i< j <k (see Figure 3.6).

q,
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FIGURE 3.6. Clockwise order around a vertex

Assume that ¢q;,. ,gx appear in that cyclic order when we traverse
C in the clockwise direction (meaning that int(C) is on the right hand
side). By Proposition 2.1.5, P, U-- U Py divides int(C) into k faces. One
is bounded by the cycle obtained by walking on the segment R of C from
q1 to g2 in the clockwise direction and then turning sharp right. That
face is bounded by RU P, U P;. Similarly for the other bounded faces. It
follows that the initial straight line segments of P;,..., Py occur in that
clockwise order around p. This simple observation leads to the following.

LEMMA 3.2.1. Let C’' be a simple closed polygonal curve in int(C)
such that p € int(C’) C int(C). Let P/, be the segment of P; from p to
the point ¢, on C’ such that P,NC’' = {q}}, i=1,. ,k. Thengqy,...,q
occur in that clockwise order on C’

Now let Q1,...,Qx be simple arcs (not necessarily polygonal) such
that @Q; N Q; = {p} for 1 < i < j < k. Let C be a simple closed polygonal
curve such that p € int(C) and @; NC # 0 for i = 1,...,k. Let Q°
be the segment of Q; from p to, say g;, on C such that C N QY = {4},
i=1,...,k. We define the clockwise order of Q,...,Qx around p as the
clockwise order of ¢;,. ,¢qx on C.

LEMMA 3.2.2. The clockwise order of Q:,...,Qx is independent of
C.

ProoF. Assume C’ is a simple polygonal closed curve such that p €
int(C’) C int(C). Let @’ be the segment of Q; from p to the point g; on
C’ such that @, NC’ = {¢i} for i = 1,...,k. As in the proof of Lemma
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2.1.1, there are polygonal arcs P;, ., P in int(C) such that P; connects
p and ¢;, and such that ¢ € P;, and P,NP; = {p} for 1 <i < j <k.
By Lemma 3.2.1, the clockwise order of ¢;, ,gx on C is the same as the
clockwise order of ¢;,. ,q; on C’

The proof is now completed by observing that for any simple closed
curves C,C” containing p in their interior, there is a simple polygonal
closed curve C’ such that p € int(C’) C int(C) Nint(C"). a

Let C,Q;, ¢, Q; be as above and let P; be a simple polygonal arc in
int(C) from p to ¢; such that P,NC = {¢}, i = 1,...,k, and such that
P,NP; = {p},1 <£i < j < k. From the Jordan-Schonflies theorem
(combined with Theorem 2.2.6 if K = 1) we have:

LEMMA 3.2.3. There ezists a homeomorphism f of R? onto R? keep-
ing C U ext(C) fized such that f(P;)) =Q%,i=1,...,k.

Let P be a simple arc in an open disc D in R*> As D is homeomorphic
to R?, it follows from Theorem 2.1.11 that D \ P is arcwise connected.
Also, it is easy to find a simple closed polygonal curve C in D such that
P C int(C). We apply this observation to a connected graph G embedded
in an orientable triangulated surface S. (In particular, we think of S as a
union of triangles in R?, so that we can speak of polygonal arcs in S.) For
every vertex v in G we let D be an open disc containing v but intersecting
only edges incident with v. We may assume that D = int(C,) where C,
is a simple closed polygonal curve. By a simple compactness argument,
there exists, for every edge e of G (which is not a loop), a simple closed
polygonal curve C. such that e is in int(Ce) and int(Ce) N int(Cy) = @
if e, f are nonadjacent edges, and int(C.) N int(Cy) = int(C,) if both e
and f are incident with the vertex v. (If e is a loop, then C, is a cylinder
containing e. Note that, in order to ensure that int(Ce)Nint(Cy) = int(C,)
we may have to replace the original C, by a smaller one. This is an easy
exercise on plane graphs with polygonal edges.) Moreover, we can assume
that the union of all C, and C, (e € E(G), v € V(G)) form a cubic graph,
see Figure 3.7.

F1GUure 3.7. Discs around vertices and edges
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Assume now that all vertices of G have degree different from 2. Lemma
3.2.2 enables us to speak of the clockwise ordering of the edges incident
with v except that we have two possibilities (since we can interchange be-
tween clockwise and anticlockwise). We fix one of these as being clockwise.
Using int(C.) we then obtain a clockwise ordering of the edges incident
with the other end of e. Continuing like that and using the facts that
G is connected and that S does not contain a Mdbius strip, we obtain
a clockwise ordering around each vertex v of G. In order to make this
precise, the following observation is useful. If C' is a cycle in G with edges
e1,es,...,er then int(C,, ) Uint(Ce,)U-- - Uint(C,,) is homeomorphic to
an annulus (i.e., a cylinder) in R? because S does not contain a Mdbius
strip. This observation (the proof of which we leave for the reader) shows
that clockwise does not change to anticlockwise when we traverse C.

If G contains vertices of degree two, we suppress them to get a home-
omorphic graph G’ without such vertices. The above method determines
clockwise ordering around each vertex of G’ and hence also around each
vertex of G.

Assume that G is cellularly embedded in S. Let 7 = {=m, | v € V(G)}
where 7, is the cyclic permutation of the edges incident with the vertex
v such that m,(e) is the successor of e in the clockwise ordering around v.
The cyclic permutation w, is called the local rotation at v, and the set m
is the rotation system of the given embedding of G in S.

As noted at the beginning of this section, we can use the rotation
system 7 to define a surface S’ which is formed by pasting pairwise disjoint
n-polygons in R? together. With this notation we have:

THEOREM 3.2.4. Suppose that G is a connected multigraph with at
least one edge that is cellularly embedded in an orientable surface S. Let
m be the rotation system of this embedding, and let S’ be the surface of the
corresponding 2-cell embedding of G. Then there exists a homeomorphism
of S onto S’ taking G in S onto G in S’ (in such a way that we induce
the identity map from G onto its copy in S’). In particular, every cellular
embedding of a graph G in an orientable surface is uniquely determined,
up to homeomorphism, by its rotation system.

PROOF. As previously noted and indicated in Figure 3.7, we can de-
fine a cubic graph, which we call H, which is the union of the simple closed
curves C, (e € E(G)). We draw the corresponding graph H’ on S’ using
polygonal arcs. By iterated use of Lemma 3.2.3 there exists a homeomor-
phism f of U.cp(q) int(C.) onto the corresponding subset of S’ such that
f(H) = H' and f takes G (in S) onto G (in S’). The part of S’ where
f~! is not defined are faces of H’ bounded by cycles in H’ (To see this,
focus on a face F' of G in S’ bounded by the polygon P which is a m-walk
in G. Now P together with the part of H’ inside P forms a 2-connected
graph with precisely one facial cycle that does not intersect P.) By the
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Jordan-Schonflies Theorem, we can extend f~! to a homeomorphism of
S’ onto S. There is only one detail which needs discussion. If FY is face
in S’ on which f~! is undefined, then there is a corresponding face F) in
S. We only have to show that, if Fj is another such face in S’, then the
corresponding face F; in S is distinct from Fj. So assume that F; = Fs.
Let Q be a simple arc in Fy from f~1(0F}) to f~!(0F;) where OF is the
boundary of F for i = 1,2, such that all points of @, except the ends,
are in F). It is easy to see that ) does not separate F;. This contradicts
Corollary 2.1.4 (applied to Fy). O

The last sentence of Theorem 3.2.4 is often called the Heffter-Edmonds-
Ringel rotation principle. The idea is implicitly used by Heffter [He891)].
It was made explicit by Edmonds [Ed60], and Ringel [Ri74]| demonstrated
its importance in the proof of the Heawood conjecture (see Section 8.3).

Rotation systems 7 = {7, | v € V(G)} and n’ = {n} | v € V(G)} of
G are equivalent if they are either the same or for each v € V(G) we have
n! =771 A simple corollary of Theorem 3.2.4 is:

COROLLARY 3.2.5. Suppose that we have cellular embeddings of a con-
nected multigraph G in orientable surfaces S and S’ with rotation systems
m and 7', respectively. Then there is a homeomorphism S — S’ whose re-
striction to G induces the identity if and only if ® and ©' are equivalent.

We conclude this section with two examples.

PIZNRN :
7
1 6
2 6
2 5
3 5
3 4 4

FIGURE 3.8. Rotation systems of K7 and K3 3

In Figure 3.8 we have drawings of the graphs K, and K33 in the
plane. The local rotations of these drawings determine embeddings in the
torus. They are shown in Figure 3.9 (where the surface of the torus is
represented as a square with opposite sides identified).

3.3. Embedding schemes

In Section 3.2 we showed how a cellular embedding of a connected
graph in an orientable surface can be described as a 2-cell embedding by
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FiGUrE 3.9. Embeddings of K7 and K3 3 in the torus

its rotation system. In this section we extend the notion of the rotation
system in order to include embeddings in nonorientable surfaces. Let G be
a connected multigraph cellularly embedded in a surface S. Assume first
that G has no vertices of degree 2. Lemma 3.2.2 enables us to speak of
clockwise ordering of edges incident with a vertex. For each vertex we have
two possible choices, and we choose one of them to be clockwise. Define
curves Cy, v € V(G), and C,, e € E(G), as in Section 3.2. For each edge
e = uv of G we check if the clockwise orderings at v and u agree in the
disc int(Ce). If this is the case, then we set A(e) = 1, otherwise A(e) = —1.
This defines a mapping A E(G) — {1, —1}, called a signature. The pair
II = (m,A), where 7 = {m, | v € V(G)} is the set of chosen local rotations,
is an embedding scheme for the given embedding of G. If A(e) = 1 for each
edge e, then S is orientable and the embedding coincides with the 2-cell
embedding obtained from the rotation system 7.

If G has vertices of degree 2, we suppress them to get a multigraph G’
on which we can define an embedding scheme II' = (7', X’) as described
above. Now, for each edge e’ of G’, which corresponds to a path P in G,
we replace X' (e’) by the signature A on E(P) such that the first edge of
P has signature X' (e’), and all other edges have positive signature. This
defines an embedding scheme for G.

The embedding scheme corresponding to an embedding of G is not
uniquely determined. For example, if we change clockwise ordering at a
vertex v to anticlockwise, then m, is replaced by = 1 and for each edge e
incident with v we change A(e) to —\(e). If we select a spanning tree T
of G, then clearly the local rotations 7 can be chosen in such a way that
A(e) = 1 for each edge e € E(T).

Two embedding schemes IT and II' of G are equivalent if II' can be
obtained from II by a sequence of operations, each one involving a change
of clockwise to anticlockwise at a vertex v and the corresponding change
of the signs of the edges incident with v.
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Having an embedding scheme II of GG, one can define a 2-cell embed-
ding of G in a surface S’ generalizing the method at the beginning of Sec-
tion 3.2. The only difference is that the II-facial walks and II-polygons are
determined by the following generalized process, called the face traversal
procedure. We start with an arbitrary vertex v and an edge e = vu incident
with v. Traverse the edge e from v to u. We continue the walk along the
edge ¢’ = m,(e). We repeat this procedure as in the orientable case, except
that, when we traverse an edge with signature —1, the m-anticlockwise ro-
tation is used to determine the next edge of the walk. (This can happen
already at u if A(e) = —1.) We continue using 7-anticlockwise ordering
until the next edge with signature —1 is traversed, and so forth. The walk
is completed when the initial edge e is encountered in the same direction
from v to u and we are in the same mode (the 7-clockwise ordering) with
which we started. The other IlI-facial walks are determined in the same
way by starting with other edges. At the beginning of Section 3.2 we
described how to obtain a surface from a rotation system. In the present
more general context we must argue why every edge appears precisely
twice in Il-facial walks. We leave this to the reader. Clearly, two embed-
ding schemes are equivalent if and only if they have the same set of facial
walks.

It is easy to see that the surface S’ is nonorientable if and only if
G contains a cycle C' which has odd number of edges e with A(e) = —1.
For, if C exists, then along C left and right interchange, hence S’ contains
a Mobius strip. If such a cycle does not exist, then we modify II to
an equivalent embedding scheme such that the signature is positive on a
spanning tree of G, and hence positive everywhere. It follows that every
connected multigraph with at least one cycle has a 2-cell embedding in
some nonorientable surface.

The proof of Theorem 3.2.4 easily extends to the following.

THEOREM 3.3.1. Suppose that G is a connected multigraph (with at
least one edge) that is cellularly embedded in a surface S. Let II be the
corresponding embedding scheme, and let S’ be the surface of the 2-cell
embedding of G corresponding to II. Then there ezists a homeomorphism
of S onto S’ taking G in S onto G in S’ whose restriction to G induces the
wdentity on G. In particular, every cellular embedding of a graph G in some
surface is uniquely determined, up to homeomorphism, by its embedding
scheme.

Theorem 3.3.1 was first made explicit by Ringel [Ri77a] and by Stahl
[St78]. Hoffman and Richter [HR84] presented a combinatorial descrip-
tion of embeddings which are not necessarily cellular.

A simple corollary of Theorem 3.3.1 is:

COROLLARY 3.3.2. Let Il and II' be embedding schemes correspond-
ing to cellular embeddings of a connected multigraph G in surfaces S and
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S’, respectively. Then there is a homeomorphism of S to S’ whose restric-
tion to G induces the identity if and only if II and II' are equivalent.

FIGURE 3.11. Embeddings of K33 and Ky 4

Consider, for example, the drawings of K33 and K4 4 in Figure 3.10
with local rotations as indicated in the picture. A negative signature of
an edge is marked by a cross. The corresponding 2-cell embeddings in the
projective plane and in the Klein bottle, respectively, are shown in Figure
3.11 (where the projective plane is represented as a disk D with every pair
of opposite points on the boundary of D identified, while the Klein bottle
is represented by a rectangle whose sides are identified as shown in the
figure).

3.4. The genus of a graph

We define the genus g(G) and the nonorientable genus g(G) of a graph
G as the minimum h and the minimum k, respectively, such that G has



