THE PROBABILISTIC LENS:

The Erdos—Ko—Rado
Theorem

A family F of sets is called intersecting if A, B € F implies A N B # (. Suppose
n > 2k and let F be an intersecting family of k-element subsets of an n-set, for
definiteness {0,...,n — 1}. The Erdés-Ko-Rado Theorem is that |F| < (371).
This is achievable by taking the family of k-sets containing a particular point. We

give a short proof due to Katona (1972).

Lemmal ForO0<s<mn-—1setA; ={s,s+1,...,8+ k — 1} where addition is
modulo n. Then F can contain at most k of the sets A.

Proof. Fix some A, € F. All other sets A, that intersect A, can be partitioned into
k—1pairs {A;_;, As4x—i}, (1 <i < k—1), and the members of each such pair are
disjoint. The result follows, since F can contain at most one member of each pair. Bl

Now we prove the Erdés-Ko-Rado Theorem. Let a permutation o of {0,...,n —
1} ands € {0,...,n — 1} be chosen randomly, uniformly and independently and set
A={o@),0(i+1),...,0(i +k — 1)}, addition again modulo n. Conditioning on
any choice of o the lemma gives Pr[A € F] < k/n. Hence Pr[A € F] < k/n. But
A is uniformly chosen from all k-sets so
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Linearity of Expectation

The search for truth is more precious than its possession.
— Albert Einstein

2.1 BASICS

Let Xy,...,X,, be random variables, X = ¢;X; + --- + ¢, X,,. Linearity of
expectation states that

EX]|=aE[Xi]+ - +E[X,] .

The power of this principle comes from there being no restrictions on the dependence
or independence of the X;. In many instances E [X] can easily be calculated by a
judicious decomposition into simple (often indicator) random variables X.

Let o be a random permutation on {1, ...,n}, uniformly chosen. Let X (o) be
the number of fixed points of ¢. To find E [X| we decompose X = X; + -+ + X,
where X; is the indicator random variable of the event (i) = 7. Then

BX,) =Prlo()) =1 = -
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16 LINEARITY OF EXPECTATION

so that . )
EX]=—-+---+—-=1.
n n

In applications we often use that there is a point in the probability space for which
X > E|[X] and a point for which X < E[X]. We have selected results with a
purpose of describing this basic methodology. The following result of Szele (1943)
is oftentimes considered the first use of the probabilistic method.

Theorem 2.1.1 There is a tournament T with n players and at least nl2—(n—1)
Hamiltonian paths.

Proof. In the random tournament let X be the number of Hamiltonian paths. For each
permutation o let X, be the indicator random variable for ¢ giving a Hamiltonian
path; that is, satistying (o(¢),0(i + 1)) € T for 1 <i < n. Then X = ) X, and

E(X] =Y E[X,]=nl2" "V,
Thus some tournament has at least E [ X] Hamiltonjan paths. [

Szele conjectured that the maximum possible number of Hamiltonian paths in a
tournament on 7 players is at most n!/(2 — o(1))™. This was proved in Alon (1990a)
and is presented in The Probabilistic Lens: Hamiltonian Paths (following Chapter 4).

2.2 SPLITTING GRAPHS

Theorem 2.2.1 Let G = (V, E) be a graph with n vertices and e edges. Then G
contains a bipartite subgraph with at least e /2 edges.

Proof. Let T C V be a random subset given by Pr [z € T] = 1/2, these choices
being mutually independent. Set B = V —T'. Call an edge {x, y} crossing if exactly
one of z,y is in T. Let X be the number of crossing edges. We decompose

X= Y Xy,

{z,y}€E
where X, is the indicator random variable for {z, y} being crossing. Then

1
E [Xzy] = 5

as two fair coin flips have probability 1/2 of being different. Then
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Thus X > e/2 for some choice of T and the set of those crossing edges form a
bipartite graph. ]

A more subtle probability space gives a small improvement (which is tight for
complete graphs).

Theorem 2.2.2 IfG has 2n vertices and e edges then it contains a bipartite subgraph
with at least en/(2n — 1) edges. If G has 2n + 1 vertices and e edges then it contains
a bipartite subgraph with at least e(n + 1)/2n + 1 edges.

Proof. When (3 has 2n vertices let T’ be chosen uniformly from among all n-element
subsets of V. Any edge {z,y} now has probability n/(2n — 1) of being crossing
and the proof concludes as before. When G has 2n + 1 vertices choose 1" uniformly
from among all n-element subsets of V' and the proof is similar. ]

Here is a more complicated example in which the choice of distribution requires
a preliminary lemma. Let V = V| U - -- U Vi, where the V; are disjoint sets of size
n. Let h: V¥ — {1} be a two-coloring of the k-sets. A k-set E is crossing if it
contains precisely one point from each V;. For S C V set h(S) = > h(E), the sum
over all k-sets £ C S.

Theorem 2.2.3 Suppose h(E) = +1 for all crossing k-sets E. Then there is an
S C V for which
|h(S)| > cpn®.

Here cy, is a positive constant, independent of n.

Lemma 2.2.4 Let Py denote the set of all homogeneous polynomials f(p1,...,pk)
of degree k with all coefficients having absolute value at most one and p1ps - - - py,
having coefficient one. Then for all f € Py, there exist py,...,px € [0,1] with

|f(p11"'7pk)| Z Ck .

Here cy, is positive and independent of f.

Proof. Set
M(f)= max |f(p1,...,pK)l-

P1,--,Pk €[0,1]

For f € Py, M(f) > 0 as f is not the zero polynomial. As Py is compact and
M : P, — R is continuous, M must assume its minimum cy. n

Proof [Theorem 2.2.3]. Define a random S C V by setting
Pr(z € S] = p;, z €V,
these choices being mutually independent, with p; to be determined. Set X = h(S).

For each k-set F set
Xp = h(E) ifECS,
E=Yo0 otherwise.



