THE PROBABILISTIC LENS: The Erdős–Ko–Rado Theorem

A family \mathcal{F} of sets is called intersecting if $A, B \in \mathcal{F}$ implies $A \cap B \neq \emptyset$. Suppose $n \geq 2k$ and let \mathcal{F} be an intersecting family of k-element subsets of an n-set, for definiteness $\{0, \ldots, n-1\}$. The Erdős–Ko–Rado Theorem is that $|\mathcal{F}| \leq {\binom{n-1}{k-1}}$. This is achievable by taking the family of k-sets containing a particular point. We give a short proof due to Katona (1972).

Lemma 1 For $0 \le s \le n-1$ set $A_s = \{s, s+1, \ldots, s+k-1\}$ where addition is modulo n. Then \mathcal{F} can contain at most k of the sets A_s .

Proof. Fix some $A_s \in \mathcal{F}$. All other sets A_t that intersect A_s can be partitioned into k-1 pairs $\{A_{s-i}, A_{s+k-i}\}, (1 \le i \le k-1)$, and the members of each such pair are disjoint. The result follows, since \mathcal{F} can contain at most one member of each pair.

Now we prove the Erdős–Ko–Rado Theorem. Let a permutation σ of $\{0, \ldots, n-1\}$ and $i \in \{0, \ldots, n-1\}$ be chosen randomly, uniformly and independently and set $A = \{\sigma(i), \sigma(i+1), \ldots, \sigma(i+k-1)\}$, addition again modulo n. Conditioning on any choice of σ the lemma gives $\Pr[A \in \mathcal{F}] \leq k/n$. Hence $\Pr[A \in \mathcal{F}] \leq k/n$. But A is uniformly chosen from all k-sets so

$$rac{k}{n} \geq \Pr\left[A \in \mathcal{F}
ight] = rac{|\mathcal{F}|}{\binom{n}{k}}$$

and

$$|\mathcal{F}| \le rac{k}{n} \binom{n}{k} = \binom{n-1}{k-1}$$

This Page Intentionally Left Blank

2

Linearity of Expectation

The search for truth is more precious than its possession. – Albert Einstein

2.1 BASICS

Let X_1, \ldots, X_n be random variables, $X = c_1 X_1 + \cdots + c_n X_n$. Linearity of expectation states that

$$\mathbf{E}[X] = c_1 \mathbf{E}[X_1] + \dots + c_n \mathbf{E}[X_n] .$$

The power of this principle comes from there being no restrictions on the dependence or independence of the X_i . In many instances E[X] can easily be calculated by a judicious decomposition into simple (often indicator) random variables X_i .

Let σ be a random permutation on $\{1, \ldots, n\}$, uniformly chosen. Let $X(\sigma)$ be the number of fixed points of σ . To find E[X] we decompose $X = X_1 + \cdots + X_n$ where X_i is the indicator random variable of the event $\sigma(i) = i$. Then

$$\operatorname{E}[X_i] = \operatorname{Pr}[\sigma(i) = i] = \frac{1}{n}$$

The Probabilistic Method, Third Edition Copyright © 2008 John Wiley & Sons, Inc. By Noga Alon and Joel Spencer

so that

$$E[X] = \frac{1}{n} + \dots + \frac{1}{n} = 1.$$

In applications we often use that there is a point in the probability space for which $X \ge E[X]$ and a point for which $X \le E[X]$. We have selected results with a purpose of describing this basic methodology. The following result of Szele (1943) is oftentimes considered the first use of the probabilistic method.

Theorem 2.1.1 There is a tournament T with n players and at least $n!2^{-(n-1)}$ Hamiltonian paths.

Proof. In the random tournament let X be the number of Hamiltonian paths. For each permutation σ let X_{σ} be the indicator random variable for σ giving a Hamiltonian path; that is, satisfying $(\sigma(i), \sigma(i+1)) \in T$ for $1 \le i < n$. Then $X = \sum X_{\sigma}$ and

$$\operatorname{E}[X] = \sum \operatorname{E}[X_{\sigma}] = n! 2^{-(n-1)}.$$

Thus some tournament has at least E[X] Hamiltonian paths.

Szele conjectured that the maximum possible number of Hamiltonian paths in a tournament on n players is at most $n!/(2-o(1))^n$. This was proved in Alon (1990a) and is presented in The Probabilistic Lens: Hamiltonian Paths (following Chapter 4).

2.2 SPLITTING GRAPHS

Theorem 2.2.1 Let G = (V, E) be a graph with n vertices and e edges. Then G contains a bipartite subgraph with at least e/2 edges.

Proof. Let $T \subseteq V$ be a random subset given by $\Pr[x \in T] = 1/2$, these choices being mutually independent. Set B = V - T. Call an edge $\{x, y\}$ crossing if exactly one of x, y is in T. Let X be the number of crossing edges. We decompose

$$X = \sum_{\{x,y\}\in E} X_{xy} \,,$$

where X_{xy} is the indicator random variable for $\{x, y\}$ being crossing. Then

$$\operatorname{E}\left[X_{xy}\right] = \frac{1}{2}$$

as two fair coin flips have probability 1/2 of being different. Then

$$\mathbf{E}\left[X\right] = \sum_{\{x,y\}\in E} \mathbf{E}\left[X_{xy}\right] = \frac{e}{2}.$$

Thus $X \ge e/2$ for some choice of T and the set of those crossing edges form a bipartite graph.

A more subtle probability space gives a small improvement (which is tight for complete graphs).

Theorem 2.2.2 If G has 2n vertices and e edges then it contains a bipartite subgraph with at least en/(2n-1) edges. If G has 2n+1 vertices and e edges then it contains a bipartite subgraph with at least e(n+1)/2n + 1 edges.

Proof. When G has 2n vertices let T be chosen uniformly from among all n-element subsets of V. Any edge $\{x, y\}$ now has probability n/(2n - 1) of being crossing and the proof concludes as before. When G has 2n + 1 vertices choose T uniformly from among all n-element subsets of V and the proof is similar.

Here is a more complicated example in which the choice of distribution requires a preliminary lemma. Let $V = V_1 \cup \cdots \cup V_k$, where the V_i are disjoint sets of size n. Let $h : V^k \to \{\pm 1\}$ be a two-coloring of the k-sets. A k-set E is crossing if it contains precisely one point from each V_i . For $S \subseteq V$ set $h(S) = \sum h(E)$, the sum over all k-sets $E \subseteq S$.

Theorem 2.2.3 Suppose h(E) = +1 for all crossing k-sets E. Then there is an $S \subseteq V$ for which

 $|h(S)| \ge c_k n^k.$

Here c_k is a positive constant, independent of n.

Lemma 2.2.4 Let P_k denote the set of all homogeneous polynomials $f(p_1, \ldots, p_k)$ of degree k with all coefficients having absolute value at most one and $p_1p_2 \cdots p_k$ having coefficient one. Then for all $f \in P_k$ there exist $p_1, \ldots, p_k \in [0, 1]$ with

$$|f(p_1,\ldots,p_k)| \ge c_k.$$

Here c_k is positive and independent of f.

Proof. Set

$$M(f) = \max_{p_1,...,p_k \in [0,1]} |f(p_1,...,p_k)|.$$

For $f \in P_k$, M(f) > 0 as f is not the zero polynomial. As P_k is compact and $M: P_k \to R$ is continuous, M must assume its minimum c_k .

Proof [Theorem 2.2.3]. Define a random $S \subseteq V$ by setting

$$\Pr\left[x\in S
ight]=p_{i},\qquad x\in V_{i}\,,$$

these choices being mutually independent, with p_i to be determined. Set X = h(S). For each k-set E set

$$X_E = \begin{cases} h(E) & \text{if } E \subseteq S, \\ 0 & \text{otherwise.} \end{cases}$$