
THE PROBABILISTIC LENS: 

The Erdós-Ko-Rado 
Theorem 

A family J7 of sets is called intersecting \f A,B G T implies A n B ^ 0. Suppose 
n > 2k and let T be an intersecting family of fc-element subsets of an n-set, for 
definiteness {0, . . . ,n — 1}. The Erdós-Ko-Rado Theorem is that \T\ < (%Z\)-
This is achievable by taking the family of fc-sets containing a particular point. We 
give a short proof due to Katona (1972). 

Lemma 1 For 0 < s < n — 1 set As — {s, s + 1 , . . . , s + k — 1} where addition is 
modulo n. Then T can contain at most k ofthe sets As. 

Proof. Fix some As e T. All other sets At that intersect As can be partitioned into 
k — 1 pairs {^4S_¿, As+fc_¿}, (1 < i < k — 1), and the members of each such pairare 
disjoint. The result follows, since T can contain at most one member of each pair. • 

Now we prove the Erdós-Ko-Rado Theorem. Let a permutation a of {0 , . . . , n -
1} and i G {0 , . . . , n — 1} be chosen randomly, uniformly and independently and set 
A — {a(i),a(i + 1 ) , . . . , a(i + k — 1)}, addition again modulo n. Conditioning on 
any choice of a the lemma gives Pr [A G !F] < k/n. Henee Pr [A G T\ < k/n. But 
A is uniformly chosen from all fc-sets so 

and 
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Linearity of Expectation 

The search for truth is more precious than its possession. 
- Albert Einstein 

2.1 BASICS 

Let Xi,..., Xn be random variables, X = c\Xi + • • • + cnXn. Linearity of 
expectation states that 

E[X]=c1E[X1} + ---+cnE[Xn] . 

The power of this principie comes from there being no restrictions on the dependence 
or independence of the Xi. In many instances E [X] can easily be calculated by a 
judicious decomposition into simple (often indicator) random variables Xi. 

Let o be a random permutation on { 1 , . . . , n}, uniformly chosen. Let X(a) be 
the number of fixed points of a. To find E [X] we decompose X = Xy + • • • + Xn 

where X¿ is the indicator random variable of the event a(i) = i. Then 

E [Xi] = Pr [a(i) =i] = -
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16 LINEARITY OF EXPECTATION 

so that 
E [X] = - + ... + - = 1. 

n n 

In applications we often use that there is a point in the probability space for which 
X > E \X] and a point for which X < E [X]. We have selected results with a 
purpose of describing this basic methodology. The following result of Szele (1943) 
is oftentimes considered the first use of the probabilistic method. 

Theorem 2.1.1 There is a toumament T with n players and at least n!2~(n_1) 
Hamiltonian paths. 

Proof. In the random toumament let X be the number of Hamiltonian paths. For each 
permutation a let Xa be the indicator random variable for a giving a Hamiltonian 
path; that is, satisfying {(r(i), <J(Í + 1)) € T for 1 < i < n. Then X = J2 Xa and 

E{X] = ^ E [ X ( T ] = n ! 2 " ( n - 1 ) . 

Thus some toumament has at least E [X] Hamiltonian paths. • 

Szele conjectured that the máximum possible number of Hamiltonian paths in a 
toumament on n players is at most n!/(2 — o(l))n . This was proved in Alón (1990a) 
and is presented in The Probabilistic Lens: Hamiltonian Paths (following Chapter4). 

2.2 SPLITTING GRAPHS 

Theorem 2.2.1 Let G = (V, E) be a graph with n vértices and e edges. Then G 
contains a bipartite subgraph with at least e/2 edges. 

Proof. Let T C V be a random subset given by Pr [ I E T ] = 1/2, these choices 
being mutually independent. Set B = V — T. Cali an edge {x, y} crossing if exactly 
one of x, y is in T. Let X be the number of crossing edges. We decompose 

X = 2_^ Xxy, 
{x,y}£E 

where Xxy is the indicator random variable for {x, y} being crossing. Then 

E [Xxy] = -

as two fair coin flips have probability 1/2 of being different. Then 

{x,y}£E 
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Thus X > e/2 for some choice of T and the set of those crossing edges form a 
bipartite graph. • 

A more subtle probability space gives a small improvement (which is tight for 
complete graphs). 

Theorem 2.2.2 IfG has 2n vértices and e edges then it contains a bipartite subgraph 
with at least en/(2n — 1) edges. IfG has 2n + 1 vértices and e edges then it contains 
a bipartite subgraph with at least e(n + l)/2n + 1 edges. 

Proof. When G has 2n vértices let T be chosen uniformly from among all n-element 
subsets of V. Any edge {x, y} now has probability n/(2n — 1) of being crossing 
and the proof concludes as before. When G has 2n + 1 vértices choose T uniformly 
from among all n-element subsets of V and the proof is similar. • 

Here is a more complicated example in which the choice of distribution requires 
a preliminary lemma. Let V = Vi U • • • U Vk, where the V¿ are disjoint sets of size 
n. Let h :Vk —> {±1} be a two-coloring of the fc-sets. A fc-set E is crossing if it 
contains precisely one point from each V¿. For S C V set h(S) = Yl h(E), the sum 
over all fc-sets ECS. 

Theorem 2.2.3 Suppose h(E) — +1 for all crossing k-sets E. Then there is an 
S C V for which 

\h{S)\>ckn
k. 

Here ck is a positive constant, independent ofn. 

Lemma 2.2.4 Let Pk denote the set of all homogeneous polynomials f(pi, •. • ,pk) 
of degree k with all coefficients having absolute valué at most one and P1P2 • • -Pk 
having coefficient one. Then for all f G Pk there exist Pi,. • • ,Pk € [0,1] with 

|/(Pl,---,Pfc)| > Cfc-

Here ck is positive and independent of f. 

Proof. Set 
M ( / ) = max | / (p i , . . . , p f c ) | . 

Pi,-,Pfc€[0,l] 

For / e Pk, M(f) > 0 as / is not the zero polynomial. As Pk is compact and 
M : Pk —> R is continuous, M must assume its mínimum c¿. • 

Proof [Theorem 2.2.3]. Define a random S C V by setting 

PT[X e S}=PÍ, x e V , 

these choices being mutually independent, with p¿ to be determined. Set X = h(S). 
For each fc-set E set 

x = í h{E) ÍÍECS, 
1 0 otherwise. 


