THE PROBABILISTIC LENS: The Erdös-Ko-Rado Theorem

A family \mathcal{F} of sets is called intersecting if $A, B \in \mathcal{F}$ implies $A \cap B \neq \emptyset$. Suppose $n \geq 2 k$ and let \mathcal{F} be an intersecting family of k-element subsets of an n-set, for definiteness $\{0, \ldots, n-1\}$. The Erdős-Ko-Rado Theorem is that $|\mathcal{F}| \leq\binom{ n-1}{k-1}$. This is achievable by taking the family of k-sets containing a particular point. We give a short proof due to Katona (1972).

Lemma 1 For $0 \leq s \leq n-1$ set $A_{s}=\{s, s+1, \ldots, s+k-1\}$ where addition is modulo n. Then \mathcal{F} can contain at most k of the sets A_{s}.

Proof. Fix some $A_{s} \in \mathcal{F}$. All other sets A_{t} that intersect A_{s} can be partitioned into $k-1$ pairs $\left\{A_{s-i}, A_{s+k-i}\right\},(1 \leq i \leq k-1)$, and the members of each such pair are disjoint. The result follows, since \mathcal{F} can contain at most one member of each pair.

Now we prove the Erdős-Ko-Rado Theorem. Let a permutation σ of $\{0, \ldots, n-$ $1\}$ and $i \in\{0, \ldots, n-1\}$ be chosen randomly, uniformly and independently and set $A=\{\sigma(i), \sigma(i+1), \ldots, \sigma(i+k-1)\}$, addition again modulo n. Conditioning on any choice of σ the lemma gives $\operatorname{Pr}[A \in \mathcal{F}] \leq k / n$. Hence $\operatorname{Pr}[A \in \mathcal{F}] \leq k / n$. But A is uniformly chosen from all k-sets so

$$
\frac{k}{n} \geq \operatorname{Pr}[A \in \mathcal{F}]=\frac{|\mathcal{F}|}{\binom{n}{k}}
$$

and

$$
|\mathcal{F}| \leq \frac{k}{n}\binom{n}{k}=\binom{n-1}{k-1}
$$

This Page Intentionally Left Blank

2

Linearity of Expectation

The search for truth is more precious than its possession.

- Albert Einstein

2.1 BASICS

Let X_{1}, \ldots, X_{n} be random variables, $X=c_{1} X_{1}+\cdots+c_{n} X_{n}$. Linearity of expectation states that

$$
\mathrm{E}[X]=c_{1} \mathrm{E}\left[X_{1}\right]+\cdots+c_{n} \mathrm{E}\left[X_{n}\right] .
$$

The power of this principle comes from there being no restrictions on the dependence or independence of the X_{i}. In many instances $\mathrm{E}[X]$ can easily be calculated by a judicious decomposition into simple (often indicator) random variables X_{i}.

Let σ be a random permutation on $\{1, \ldots, n\}$, uniformly chosen. Let $X(\sigma)$ be the number of fixed points of σ. To find $\mathrm{E}[X]$ we decompose $X=X_{1}+\cdots+X_{n}$ where X_{i} is the indicator random variable of the event $\sigma(i)=i$. Then

$$
\mathrm{E}\left[X_{i}\right]=\operatorname{Pr}[\sigma(i)=i]=\frac{1}{n}
$$

so that

$$
\mathrm{E}[X]=\frac{1}{n}+\cdots+\frac{1}{n}=1
$$

In applications we often use that there is a point in the probability space for which $X \geq \mathrm{E}[X]$ and a point for which $X \leq \mathrm{E}[X]$. We have selected results with a purpose of describing this basic methodology. The following result of Szele (1943) is oftentimes considered the first use of the probabilistic method.

Theorem 2.1.1 There is a tournament T with n players and at least $n!2^{-(n-1)}$ Hamiltonian paths.

Proof. In the random tournament let X be the number of Hamiltonian paths. For each permutation σ let X_{σ} be the indicator random variable for σ giving a Hamiltonian path; that is, satisfying $(\sigma(i), \sigma(i+1)) \in T$ for $1 \leq i<n$. Then $X=\sum X_{\sigma}$ and

$$
\mathrm{E}[X]=\sum \mathrm{E}\left[X_{\sigma}\right]=n!2^{-(n-1)}
$$

Thus some tournament has at least $\mathrm{E}[X]$ Hamiltonian paths.
Szele conjectured that the maximum possible number of Hamiltonian paths in a tournament on n players is at most $n!/(2-o(1))^{n}$. This was proved in Alon (1990a) and is presented in The Probabilistic Lens: Hamiltonian Paths (following Chapter 4).

2.2 SPLITTING GRAPHS

Theorem 2.2.1 Let $G=(V, E)$ be a graph with n vertices and e edges. Then G contains a bipartite subgraph with at least e/2 edges.

Proof. Let $T \subseteq V$ be a random subset given by $\operatorname{Pr}[x \in T]=1 / 2$, these choices being mutually independent. Set $B=V-T$. Call an edge $\{x, y\}$ crossing if exactly one of x, y is in T. Let X be the number of crossing edges. We decompose

$$
X=\sum_{\{x, y\} \in E} X_{x y}
$$

where $X_{x y}$ is the indicator random variable for $\{x, y\}$ being crossing. Then

$$
\mathrm{E}\left[X_{x y}\right]=\frac{1}{2}
$$

as two fair coin flips have probability $1 / 2$ of being different. Then

$$
\mathrm{E}[X]=\sum_{\{x, y\} \in E} \mathrm{E}\left[X_{x y}\right]=\frac{e}{2}
$$

Thus $X \geq e / 2$ for some choice of T and the set of those crossing edges form a bipartite graph.

A more subtle probability space gives a small improvement (which is tight for complete graphs).

Theorem 2.2.2 If G has $2 n$ vertices and e edges then it contains a bipartite subgraph with at least en/(2n-1) edges. If G has $2 n+1$ vertices and e edges then it contains a bipartite subgraph with at least $e(n+1) / 2 n+1$ edges.

Proof. When G has $2 n$ vertices let T be chosen uniformly from among all n-element subsets of V. Any edge $\{x, y\}$ now has probability $n /(2 n-1)$ of being crossing and the proof concludes as before. When G has $2 n+1$ vertices choose T uniformly from among all n-element subsets of V and the proof is similar.

Here is a more complicated example in which the choice of distribution requires a preliminary lemma. Let $V=V_{1} \cup \cdots \cup V_{k}$, where the V_{i} are disjoint sets of size n. Let $h: V^{k} \rightarrow\{ \pm 1\}$ be a two-coloring of the k-sets. A k-set E is crossing if it contains precisely one point from each V_{i}. For $S \subseteq V$ set $h(S)=\sum h(E)$, the sum over all k-sets $E \subseteq S$.

Theorem 2.2.3 Suppose $h(E)=+1$ for all crossing k-sets E. Then there is an $S \subseteq V$ for which

$$
|h(S)| \geq c_{k} n^{k}
$$

Here c_{k} is a positive constant, independent of n.
Lemma 2.2.4 Let P_{k} denote the set of all homogeneous polynomials $f\left(p_{1}, \ldots, p_{k}\right)$ of degree k with all coefficients having absolute value at most one and $p_{1} p_{2} \cdots p_{k}$ having coefficient one. Then for all $f \in P_{k}$ there exist $p_{1}, \ldots, p_{k} \in[0,1]$ with

$$
\left|f\left(p_{1}, \ldots, p_{k}\right)\right| \geq c_{k}
$$

Here c_{k} is positive and independent of f.
Proof. Set

$$
M(f)=\max _{p_{1}, \ldots, p_{k} \in[0,1]}\left|f\left(p_{1}, \ldots, p_{k}\right)\right|
$$

For $f \in P_{k}, M(f)>0$ as f is not the zero polynomial. As P_{k} is compact and $M: P_{k} \rightarrow R$ is continuous, M must assume its minimum c_{k}.

Proof [Theorem 2.2.3]. Define a random $S \subseteq V$ by setting

$$
\operatorname{Pr}[x \in S]=p_{i}, \quad x \in V_{i},
$$

these choices being mutually independent, with p_{i} to be determined. Set $X=h(S)$. For each k-set E set

$$
X_{E}= \begin{cases}h(E) & \text { if } E \subseteq S \\ 0 & \text { otherwise }\end{cases}
$$

