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Triples, current graphs and biembeddings 

IAN ANDERSON 

Abstract. A family of ladder graphs, used by Youngs in his work on the Heawood conjecture, is used to 
provide constructions of Skolem and related triple systems, triangular biembeddings of certain complete 
graphs, and genus embeddings of certain complete multipartite graphs. 

1. Introduction 

A number of combinatorial problems reduce to the decomposit ion of a set of 
integers into triples with certain arithmetic properties. For  example,  Ringel's 
derivation [14] of the toroidal thickness of the complete graphs was achieved by 
partitioning the integers 1 , . . . ,  3n into n triples a, b, c such that ei ther a + b = c or 
a + b  + c  = 6 n  + 1, and such that g.c.d. ( a , b , c , 6 n  + 1)=  1. A similar partition, 
without the g.c.d, condition, had earlier been sought by Het t ter  [8] and found by 
Peltesohn [12] in their work on Steiner triple systems. 

Perhaps the best known triples are those known as Skolem triples. Skolem [18] 
showed that, if n - -0  or 1 (rood 4), then the numbers 1 , . . .  ,3n  can be part i t ioned 
into n triples a, b, c such that a + b = c in each triple. In fact, Skolem's triples have 
the further property that the numbers 1 , . . . , n  occur in distinct triples as the 
difference a = c - b between the other  two members of the triple. O 'Keefe  [11] 
then showed that if n -= 2 or 3 (mod 4) then the numbers 1 , . . . ,  3n - 1 ,3n  + 1 have 
a similar partition into triples. 
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DEFINITION. The triples (1, bl, cl) , . . .  ,(n, b,, c,) are said to form a Skolem 
triple system if c~-b~=i for each i = 1  . . . . .  n and {b~ . . . .  ,b ,}U{cl  . . . . .  c,}= 
{n + 1 . . . . .  3n}. 

The triples (1, b~,c~) . . . .  ,(n,b,,c,) are said to form a modified Skolem triple 
system if c , - b , = i  for each i = 1  . . . . .  n and {bl . . . . .  b,}t3{c~ . . . . .  c ,}=  
{n + 1 , . . . , 3n  - 1 ; 3 n  + 1}. 

More recently, a number of authors (e.g. Hanani [7] and Hilton [9]) have 
independently constructed such triple systems, the latest rediscovery being due to 
Stanton and Goulden [20]. One of the uses of such triples is to give an easy 
construction of cyclic Steiner triple systems (e.g. [19] and [20]); but there are other 
applications. For example, use is made of them in the investigation in [2] of the 
toroidal thickness of the graph K,o~; Rosa (e.g., [16]) makes much use of them in 
his work on Steiner systems, and Rogers uses them in his study [15] of harmonious 
graphs. 

The purpose of this paper is to relate these and other triple systems to a family 
of current graphs explored by Youngs [22]. We shall point out that his work leads 
incidentally to a little known construction of (modified) Skolem systems; we shall 
then use the method to obtain an infinite number of biembedding numbers, and 
further constructions of triple systems. 

It is well known that the solution of the Heawood conjecture on the colouring of 
maps drawn on orientable surfaces was achieved by the concerted work of Gustin, 
Ringel, Youngs and others, who showed that the genus of the complete graph K, is 
given by { ~ ( n -  3 ) ( n -  4)}, where {x} denotes the least integer -> x. The proof is 
achieved by considering separately each of the congruence classes of n modulo 12. 
Ringel [13] gave the first proof for the case n --7 (mod 12) in 1961, but the best 
known solution is the one published by Youngs [21] in 1970. This solution uses a 
family of non-bipartite current graphs. Youngs however published another current 
graph proof [22] in 1970, which uses a family of bipartite graphs. Our first task is to 
describe these graphs; this is done in the following section. 

2. Ladder graphs 

The graphs in Figure 1 are examples of ladder graphs with an odd number of 
rungs. The first one will be called a cylindrical ladder graph, the second one a 
Mi~bius ladder graph, because of the absence or presence of a twist incurred by the 
labellings of the ends A,/3. In both graphs, ends A are identified, as are ends/3. 
The shaded vertices are interpreted as clockwise roundabouts, and the unshaded 
ones as counterclockwise roundabouts. It is easy to check that in each case, 
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Figure 1 

5 9 6 7 5 
A ~  .~ ~ ~ ~ A 

B ~ ~ ~ ~ ~ B 
12 8 11 10 12 

Figure 2 

provided the number o[ rungs is odd, the roundabouts  (rotations) induce a single 
circuit in the sense that if we start on any edge and proceed along edges, obeying 
rotations at each vertex and always taking the first available exit, then we shall 
eventually arrive back at the starting point, having travelled along each edge 
exactly once in each direction. 

If the number  of rungs is even, then no rotation scheme can be found which 
induces a single circuit. However ,  ladder graphs with an even number  of rungs will 
nevertheless be of interest. Note  that a cylindrical ladder graph is bipartite if the 
number  of rungs is even, and a M6bius ladder graph is bipartite if the number of 
rungs is odd. 

Youngs showed that the numbers 1 . . . .  ,3n  can be assigned to the (directed) 
edges, with 1 , . . . ,  n on  the rungs, and with Kirchhoff's current law satisfied at each 
vertex, using an n-rung cylindrical ladder graph if n -= 0 or 3 (mod 4) and an n -rung 
M6bius graph if n -- 1 or 2 (mod 4). Note that in the cases n = 0 or 1 (mod 4), the 
ladders used are bipartite. 

The  theory of current  graphs yields the result that if 1 . . . . .  3n are assigned to 
the edges with Kirehhoff's current  law satisfied, and if the rotations induce a single 
circuit, then a triangulation of some orientable surface by K6,÷1 is thereby achieved. 
So, by this method, Youngs achieved a triangular (and hence genus) embedding of 
K6,+l whenever  n is odd. He thus obtained the genus of Ki2n+7. 

Note further,  however,  that if n - 0 or 1 (mod 4), the graphs used are bipartite, 
and so we can produce a system of n triples by choosing alternate vertices and 
taking as the triples the 3 numbers on the 3 edges incident to each such vertex. 
Since 1 . . . . .  n are on the rungs, the triples produced are Skolem triples. The case 
n = 4 is illustrated in Figure 2. From this graph, we can read off Skolem triple 
systems in two different ways: 

(1,6,7), (2,10,12), (3,8, 11), (4,5,9), 
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and 

(1, 10, 11), (2,5,7),  (3,6,9),  (4,8, 12). 

Similarly, Youngs showed t ha t t he  numbers  1 . . . .  ,3n - 1; 3n + 1 can be assigned to 
the edges, with 1 , . . . ,  n - 1; n + 1 on the rungs and with Kirchhoff satisfied, using a 

cylindrical ladder graph if n ~ 1 or  2 (mod 4) and a M6bius graph if n -----0 or  3 
(mod 4). In the cases n = 2 or  3, the graphs are biparti te and so triple systems can 

be read off as before.  This t ime 1 . . . .  , n - 1; n + 1 are on the rungs and hence in 
different triples. However ,  in each case n appears  on an edge adjacent  to the edge 
with n + 1, so one of the triple systems obtained will have 1 . . . . .  n in different 
triples. 

Thus we obtain a construction of Skolem and modified Skolem triples in all 
possible cases. 

3. Zigzags and the main iemmas 

We now prove two lemmas which we shall use later. The  method of proof  

employs  the zigzags used by Youngs. 

L E M M A  1. I f  n =- 0 or 3 (mod 4), the numbers 2 . . . . .  3n + 1 can be assigned to 
the (directed) edges of  an n-rung bipartite ladder graph, with 2 , . . . ,  n + 1 on the 

rungs, and with Kirchhoff's current law satisfied. 

Proof. The  ladder will be cylindrical if n --- 0 (mod 4), M6bius if n - 3. 
First consider n = 12, and the zigzag diagram of Figure 3. The  numbers  2 . . . .  ,13 

occur to the right of the horizontal lines. These numbers  represent  the lengths of 

1 2 3 4 5 6 7 8 9 10 11 12 • Indices i 
l • w, • . o 12o 101  8 o 6 e 4 o 2 e 

13 11 9 7 5 3 1 " labels 25 - 2 

11o 

7 
1 . ,,, 

I 
I 4 

3 
I 2 

I : 6 
]11 

Figure 3 
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14 24 15 23 16 29 34 30 33 

37 27 36 28 35 22 17 21 18 

Figure 4 

31 19 25 14 

t ~ 6 ~ 1  t ~ 1  

20 32 26 37 

A 

B 

the horizontal lines except in the underlined cases, where the numbers represent 
the label above the dot at the centre of the line. These 12 numbers will give the 
currents on the rungs of the ladder graph, in order. The currents on the horizontal 
edges of the ladder graph will occur in pairs P~, namely the pairs (13 + i, 3 8 - i )  
where i is the index above a vertical part of the zigzag. From the figure we read off 
the following sequence: 

P~ 10 P,I 9 P2 8 P,o 7 P3 13 P9 5 P4 4 P8 3 P~ 2 P7 12 P6 6 P,2 11 P~. 

From this sequence we obtain the currents as shown in Figure 4. Note that an 
underlined number produces a 'twist' in the order of the currents in the pair 
following it. 

The reason for the midpoint labelling is as follows. For Kirchhoff's current law 
to be satisfied, the current in the rung between the edges with current pairs P, and 
P~ has to be ! i - j t if no twist occurs, whereas if a twist does occur the current in the 
rung must be 

0 8 -  i ) -  (13 + j )  = 25 - (i + j ) .  

But the labels have been chosen so that the label beneath index i is 25 - 2i ; thus the 
label at the midpoint of the horizontal line between i and j is 2 5 -  (i + j). 

The zigzag of Figure 3 is easily generalised to deal with the case of n -  0 
(mod 4). In each case there are two twists, and the ladder graph is cylindrical and 
hence bipartite. Figure 5 shows the general solution obtained for n = 4m. 

4m+2 8m 4m+3 8ra- 1 4rti+4 

A ~ ... 

$ 

B ~- ~ ~ 
12~,+1 8m+3 12m 8m+4 12m-1 

5m 7ra+2 5m+| 9m+2 I lm+!  9m+3 10ra+3 t0r~+l 6ra+l 8m+l 4ra+2 

llm+3 9m+l l lm+2 7m+l 5m+2 7m 8 2 2 ! 

Figure 5 
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I 

5 G 7 8 9 10 t l  
o t 2  o l O o  8 = G =' 4 • 2 t 

11 9 7 $ 3 
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8 

• 
5 

14 
I 3 2 

Figure 6 

13 22 14 21 32 27 31 28 30 18 24 34 

~ ~ 9 ~ -  ~8 t ~7~ 11~ ~5~ ~4~ ~3~ ~2~ ~12 t ~6~ i0~ ~ B 

34 25 33 26 15 20 16 19 17 29 23 13 
Figure 7 

4va+5 8m+6 4m+6 8m+5 5m+4 7m+7 llm+lO 9m+9 Ilm+9 

A ~ ,~ ~ ~- . . . .  ~- .~ ~ 

B " "  ~ ~ 1 ~ 

12m+lO 8m+9 12m+9 8m+lO l lm+l l  ~ + 8  5m+5 7m+6 5m+6 

Figure 8 

lOm+ll lore+8 IOm+lO 6m46 8m+8 12m+lO 

6m+4 6m+7 6m+5 10~+9 8m+7 4m+5 

For n ---- 3 (mod 4), the general zigzag can be illustrated by the case n = 11, 
shown in Figure 6. 

We read off the sequence 

P 1 9 P * o 8 P 2 7 P 9 1 1 P 3 5 P s 4 / ' 4 3 P 7 2 P 5 1 2 P ~ 6 P * 1 1 0 P l ,  

where P~ denotes the pair (12 + i, 35 - i), and thus obtain the ladder graph of Figure 
7, which, because of three twists, is M6bius and hence bipartite. By generalising 
Figure 7 we obtain, for n = 4m + 3, the required ladder graph which completes the 
proof of the lemma. This is exhibited in Figure 8. 
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t 

Figure 9 
16 28 i7 27 18 26 40 34 39 

!2~ !1~ i0~ ~9~ ~8~ ~!4~ --~6 t 
43 31 42 32 41 33 19 

10 11 12 13 14 

12 
111 

]10 
9 

I1~ 

I 6 5 

35 38 23 22 29 16 

~5~ ~4t ~3~ 15t "1t~7~ !3t ~ A 
~- B r ~ r ~ r 25 20 24 21 36 37 30 43 

Figure 10 
4m+4 8m+4 4rn+5 8m+3 5m+3 7m+5 l i ra+7 9m+7 l ira+6 

LT/T _ _  

12m+7 8m+7 12m+6 8m+8 l ira+8 9m÷6 5m+4 7m+4 5rtt+5 

10ra+5 10m+8 6m+5 6m+4 8ra+5 4m+4 

Ora+6 6m+3 10rn+6 10~+7 8m+6 12m.7  

Figure 11 

LEMMA 2. I[n ~ 1 or 2 (mod 4), the numbers 1;3 . . . . .  3n + 1 can be assigned 
to the (directed) edges of a bipartite n-rung ladder graph, with 1; 3 . . . . .  3n + 1 on the 
rungs, and with Kirchhoff's current law satisfied. 

Proof. In considering the case n =-- 2 (mod 4), first consider n = 14. From the 
zigzag of Figure 9 we read off the sequence 

Pt 12 P13 11 P2 10 Pl2 9 P3 8 P .  14 P4 6 Plo 5 P9 3 P6 15 P8 1 P7 7 P14 13 P1, 

where P, is the pair (15 + i,44 - i), and obtain the ladder graph of Figure 10, which, 
because of two twists, is cylindrical and hence bipartite. 

The general case of n = 4m + 2 is dealt with by generalising the zigzag of Figure 
9. This leads to the ladder graph exhibited in Figure 11. 
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................ 
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1 
t7 

Figure 12 

14 
3 

i + 5 

8 
112 

12 13 

15 28 39 29 38 30 

A T3~ 11~ !0~.~9~ ~8t~12t 
B ~ ~ . . . .  

40 27 16 26 17 25 

18 24 19 23 20 34 33 40 

Z6t  5t J 4 t -  ~ ,.. t I t  7 
37 31 36 32 35 21 22 15 
Figure 13 

4m+3 8m+4 12m+3 8m+5 12m+2 

A +t 
12m+4 8m+3 4m+4 8m+2 4m+5 

l lm+5 9m+3 5m+3 7m+3 5m+4 6m+l  6m+5 6m+2 10m+4 10m+3 12m+4 

5m+2 7m+4 11m+4 9m+4 I lm+3 10m+6 10m+2 10m+5 6m+3 6m+4 4m÷3 

Figure 14 

For n -- 1 (mod 4), consider first n = 13. From the zigzag of Figure 12 we obtain 
the ladder graph of Figure 13, with current pairs (14 + i , 4 1 -  i). 

Because of the three twists, the graph is M6bius and hence bipartite. The 
generalisation to n = 4m + 1 is shown in Figure 14, thus completing the proof of 
Lemma 2. 

4. Biembedding numbers 

As in [3] we denote by N(yl,  y~) the smallest value of n for which K. cannot be 
edge-partitioned into two graphs embeddable on orientable surfaces of genus yl, y2 
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1 2 

a) 3n+2 b) 3n+3 

Figure 15 

respectively. It is well known that N(0,0) = 9, N(1, 1) = 14, N(2,2) = 15. Using the 
fundamental inequality 

N(y~, y2) --- ~(15 + (73 + 48(y, + y2)) 1/2) 

of [3], other biembedding numbers have been obtained ([1] and [4]). We shall show 
here that 

N(1,12m2-11m)=12m+2 (m = 1 , 2  . . . .  ). (1) 

It follows from the inequality above and its proof that (1) is true only if K12,,+~ can 
be split into two subgraphs, one triangulating the torus $t, the other triangulating 
S12m2--11m . 

T H E O R E M  1. N(1, 12m 2 -  l l m )  = 12m +2  for all positive integers m. 

Proof. First consider any n ~ 3 (mod 4). With the currents 2 . . . .  ,3n + 1 inter- 
preted as elements of Z6~+7, the ladder graph of Lemma 1 gives rise to a triangular 
embedding in an orientable surface of a graph with vertices 0,1 . . . .  ,6n  + 6 in which 
vertex 0 is joined to all others except 1, 3n + 2, 3n + 3, 3n + 4, 3n + 5, 6n + 6, and 
with vertex i joined to vertex j iff vertex 0 is joined to vertex j - i. Euler's formula 
easily gives the genus of the orientable surface as 3n 2 +½(n-5) .  Similarly, the 
current graph of Figure 15(a) gives a triangulation of $1 by a graph on the same 
vertices, with edges precisely those missing from the above. Putting n = 4s - 1, we 
thus have N(1, 12m 2 -  l l m ) =  12m +2  whenever m ( = 2 s ) i s  even. 

Next consider the case of n - 1 (mod 4). By using the ladder graph of Lemma 2 
with the currents 1; 3 , . . . ,  3n + 1 interpreted as elements of Z6n÷7, together with the 
current graph of Figure 15(b), we obtain, by a similar argument, on putting 
n = 4s + 1 and m = 2s + 1, the result N(1,12m 2 -  l l m )  = 12m + 2  whenever m is 
odd. This completes the proof of the theorem. 
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5. More on triples 

Consider the ladder graph of Lemma 1 for n----0 (mod 4). This graph is 
bipartite. Taking the triples on edges incident to alternate vertices, we obtain (in 
two different ways) a decomposition of 2 . . . .  ,3n + 1 into n triples a, b, c such that 
a + b = c, the numbers 2 . . . . .  n + 1 being in different triples. Such a system of 
triples is known as a Langford system (see [10]), shown to exist iff n = 0 or 3 
(mod 4) by Davies [5]. 

For n - 3 (mod 4), take the other bipartite ladder graph of Lemma 1. If n -= 1 or 
2 (mod 4), Langford systems do not exist, but we can obtain Langford-type systems 
of triples a, b, c covering 1,3 . . . . .  3n + 1 from the bipartite graphs of Lemma 2. 
Thus in two different ways we obtain triples with 1; 3 . . . .  , n + 1 in different triples. 

We next note that, if n - 0 or 3 (mod 4), we can add the triple (1, 3n + 2, 3n + 3) 
to the Langford systems obtained above to obtain Skolem triples covering 
1 . . . . .  3(n +1),  n - - 0  or 3 (mod4),  i.e., covering 1 . . . . .  3h, h - 0  or 1 (mod4).  
Similarly, if n ~ 1 or 2 (mod 4), we can add the triple (2, 3n + 2,3n +4)  to the 
Langford-type systems above to obtain Skolem triples covering 1 , . . . , 3 n  +2 ;  
3n + 4, n - 1 or 2 (mod 4), i.e. covering 1 . . . . .  3h - 1; 3h + 1, h - 2 or 3 (mod 4). 

6. The genus of graphs 

As another illustration of the ideas, we now show that the genus of the complete 
multipartite graph K,,o.2~ ~ can easily be found if m -= 7 (mod 8). Here K=t~ = K,~ ..... 
is the m-partite graph on m n  vertices which are partitioned into rn sets $1 . . . .  , Sm 
each of size n, and with two vertices joined by an edge unless they belong to the 
same set S~. Thus, for example, K~n~ is the coniplete bipartite graph K~.n. 

The graph K,,o~ can be thought of as having vertices labelled 0, 1 , . . . ,  3m - 1, 
with vertex i joined to vertex j except when i = j (mod m). We are going to show 
how to construct a triangular (genus) embedding of Kmt3~ in an orientable surface 
when m ---7 (mod 8). To do this we consider a current graph satisfying Kirchhoff's 
law, with the numbers 1, 2 . . . . .  ~(3m - 1), excluding m, on the edges, these numbers 
being considered as elements of Z3m. By the theory of current graphs this will yield 
a triangular embedding of the graph on vertices 0 . . . .  ,3m - 1  with i joined to j 
except when i -=j (mod m). 

To start with, consider the zigzag of Figure 16. From it we read off the sequence 

P 1 6 ~ 5 ~ 4 ~ 7 ~ 2 ~ l ~ 3 P , ,  

where P~ denotes the current pair (7 + / ,  23 - i). As before, this sequence leads to 
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1 2 3 4 5 6 ? 

I " " 6 

Is 
I = I 4 

7 
L ~  2 

Figure 16 

indices 

~' labels 16- 2 

8 14 9 13 20 18 19 22 

) ~  ) ~  ~4~ ~7~ ~2 t ~1~ ~ 3 ~  B 

22 16 21 17 10 12 11 8 

Figure 17 

4m+4 8m+6 4m+5 8m+5 5m+4 7m+6 lira+9 9m+9 lira+8 10m+10  10m+8 10m+9 12m+10 

12nt+lO gin+8 12m+9 8m+9 llm+tO 9~+8 5m+5 7m+5 5m+6 6m+4 6~+6 6¢a+5 4111+4 

Figure 18 

the ladder graph of Figure 17, which yields a triangular (genus) embedding of Klso). 
The reason for the labelling in the zigzag is as follows. For Kirchhoff's law to be 

satisfied, the current in the rung between the edges with current pairs P~ and P~ has 
to be I i - j t if no twist occurs, whereas if a twist does occur the current in the rung 
must be 

(23-  i ) -  (7 + j )  = 1 6 - ( i  +j) .  

But the labels have been chosen so that the label beneath index i is 16 - 2i ; thus the 
label at the midpoint of the horizontal line between i and/" is 1 6 - ( i  + j). 

This example generalises to a zigzag with n dots where n --- 3 (mod 4) from 
which we obtain the ladder graph of Figure 18, with currents 1 , . . . ,  12m + 10, 
excluding 8m + 7, where n = 4m + 3. This ladder graph yields a triangular embed- 
ding of Ksm+7oj. 
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4m+l 4m÷2 ~ ~ ÷ 3  7m+2 ~ + 1  9~+1 I lm  9~+2 10~-1 I ~ + 2  lore 6m÷l 4m+l 

A ..- ~ ~ . . . .  .v.- ~ ~ A  

12m+l 12m 8m+2 8ra+3 9m l lra+l  ?m+l 5m+2 7m 6~+3 6111 6ra+2 l ~ ÷ t  12m+l 

Figure 19 

Since the ladder  g r aph  of Figure  18 is b ipar t i te ,  we can read  off tr iples at 

a l t e rna te  ver t ices  as be fo r e  to ob ta in  a d e c o m p o s i t i o n  of 1 . . . . .  3n + 1, excluding 
2n + 1, into tr iples a,  b, c such tha t  a = c - b and  with a tak ing  the  values  1 . . . .  , n, 

w h e n e v e r  n -- 3 (mod  4). If n -= 0 (mod  4), s imilar  tr iples can be  found  by the zigzag 
m e t h o d  which leads to the  ladder  g raph  of Figure  lq. Since this g raph  has an even  

n u m b e r  of  rungs  we canno t  der ive  a t r iangular  e m b e d d i n g  f rom it, but  the  
bipar t ic i ty  enables  us to  ob ta in  t r iples  f rom it. In  this way  we cons t ruc t  sys tems  of  
tr iples as a b o v e  w h e n e v e r  n = 0 ( m o d  4). Such tr iple sys tems  have  b e e n  ob t a ined  by  

different  m e t h o d s  by  R o s a  [17] and  Hi l ton  [9]. 
N o w  it is p roved  in [6] that  if a t r iangular  e m b e d d i n g  can be  cons t ruc ted  for  

Ks(,)  f r o m  a b ipar t i te  cu r ren t  graph ,  then  K,,t2k,) also has a t r iangular  (genus)  
• ~mbedding.  It  fol lows f r o m  the l adder  g raph  a p p r o a c h  to K12,+7 = K12s+7(1) of 
Sect ion  2 and  the  resul ts  of  this sect ion that  the  genus  of  Kin(.) has  now b e e n  found  
when  

(i) m m 7  ( m o d l 2 ) ,  n = 2  ~, 
(ii) m -= 7 (mod 8), n = 3 . 2  k. 
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