
SlowFuzz: Automated Domain-Independent Detection
of Algorithmic Complexity Vulnerabilities

Theofilos Petsios, Jason Zhao, Angelos D. Keromytis, and Suman Jana

Columbia University

ACM Conference on Computer and Communications Security (CCS) 2017, Dallas, Texas

2

‣ Difference between average and worst-case complexity
- CPU, memory, space etc.
- User-controlled
- Exploitability & Denial of Service (DoS) 

‣ Several instances seen in the wild

COMPLEXITY VULNERABILITIES

3

‣ Difference between average and worst-case complexity
- CPU, memory, space etc.
- User-controlled
- Exploitability & Denial of Service (DoS) 

‣ Several instances seen in the wild

COMPLEXITY VULNERABILITIES

4

‣ Difference between average and worst-case complexity
- CPU, memory, space etc.
- User-controlled
- Exploitability & Denial of Service (DoS) 

‣ Several instances seen in the wild

COMPLEXITY VULNERABILITIES

5

‣ Difference between average and worst-case complexity
- CPU, memory, space etc.
- User-controlled
- Exploitability & Denial of Service (DoS) 

‣ Several instances seen in the wild

COMPLEXITY VULNERABILITIES

6

‣ Difference between average and worst-case complexity
- CPU, memory, space etc.
- User-controlled
- Exploitability & Denial of Service (DoS) 

‣ Several instances seen in the wild

COMPLEXITY VULNERABILITIES

7

‣ Heavily dependent on application logic 

‣ Algorithmic worst-case vs implementation worst-case
- Minor changes often drastically change complexity  

(e.g., pivot selection in quicksort) 

‣ Reasoning about the problem in the generic case is hard:
- Theoretical analysis is often non-trivial
- Implementation varies
- Domain-specific tools predominantly require expert knowledge

DOMAIN INDEPENDENT DETECTION OF COMPLEXITY VULNERABILITIES

▸ Average O(nlogn) vs worst-case O(n) complexity

▸ Implementation largely affects performance

▸ How do we reason on the effectiveness of a given implementation?

▸ How to test in a domain-agnostic manner?

8

EXAMPLE: QUICKSORT

2

9

‣ Domain-independent test input generation

‣ Known to perform well in grey-box settings  

‣ Very effective in modern fuzzers targeting crash/memory corruption bugs
- No expert knowledge
- Production tools compete with domain-specific engines

EVOLUTIONARY TESTING

10

‣ Can we steer evolutionary testing
towards complexity bugs?

‣ Coverage is irrelevant in this scenario

‣ Re-use fuzzing infrastructure

EVOLUTIONARY TESTING

11

‣ SlowFuzz prototype

‣ Maintain and evolve an input corpus towards slower executions

SLOWFUZZ PROTOTYPE

12

‣ Maintain and evolve an input corpus towards slower executions

SLOWFUZZ PROTOTYPE

13

‣ Maintain and evolve an input corpus towards slower executions

SLOWFUZZ PROTOTYPE

14

‣ Maintain and evolve an input corpus towards slower executions

SLOWFUZZ PROTOTYPE

15

‣ Maintain and evolve an input corpus towards slower executions

SLOWFUZZ PROTOTYPE

16

‣ Maintain and evolve an input corpus towards slower executions

SLOWFUZZ PROTOTYPE

▸ Three key controls:
- Instrumentation, Fitness Function, Mutations  

▸ Fitness Function should favor inputs that
introduce slowdowns

▸ Mutation operations with locality in mind

▸ Avoid getting stuck!

17

SLOWFUZZ KEY IDEAS

▸ Three key controls:
- Instrumentation, Fitness Function, Mutations  

▸ Fitness Function should favor inputs that
introduce slowdowns

▸ Mutation operations with locality in mind

▸ Avoid getting stuck!

18

SLOWFUZZ KEY IDEAS

▸ Three key controls:
- Instrumentation, Fitness Function, Mutations  

▸ Fitness Function should favor inputs that
introduce slowdowns

▸ Mutation operations with locality in mind

▸ Avoid getting stuck!

19

SLOWFUZZ KEY IDEAS

▸ Three key controls:
- Instrumentation, Fitness Function, Mutations  

▸ Fitness Function should favor inputs that
introduce slowdowns

▸ Mutation operations with locality in mind

▸ Avoid getting stuck!

20

SLOWFUZZ KEY IDEAS

21

‣ Fitness function maximizes CPU instructions 

‣ Mutation Strategies:
- Random
- Offset Priority
- Mutation Priority
- Hybrid

SLOWFUZZ KEY IDEAS

▸ Insertion sort & quicksort implementations

▸ Quadratic worst-case performance

▸ How close do we get to the theoretical
worst slowdown?

▸ Slowdowns of 84.97% and 83.74% of  
theoretical worst-case

22

USECASE: SORTING

▸ Apple:3.34x

▸ OpenBSD: 3.3x

▸ GNU: 26.36%

▸ NetBSD: 8.7%

23

USECASE: SORTING / REAL WORLD EXAMPLES

24

‣ Fitness function:
- CPU instructions vs Code Coverage vs Time-based tracing  

‣ Mutation Strategies:
- Random
- Offset Priority
- Mutation Priority
- Hybrid

ENGINE PROPERTIES

25

ENGINE EVALUATION / MUTATION STRATEGIES - OPENBSD QUICKSORT

26

ENGINE EVALUATION / FITNESS FUNCTIONS - OPENBSD QUICKSORT

27

‣ Evolutionary testing for complexity bugs is promising  

‣ Testcases: common instances of complexity vulnerabilities
- Hashtables
- Regular Expression Parsers
- Compression/decompression routines

EVALUATION

▸ Hash used for string keys in PHP

▸ Known worst-case performance

▸ Has been exploited in the wild

▸ For ‘ab’, ‘cd’ to collide it must hold 

▸ If if two equal-length strings A and B
collide, then strings xAy, xBy also collide

28

USECASE: PHP’S DJBX33A HASH

c = a + n ∧ d = b − 33 ∗ n, n ∈ Z

▸ 64 hashtable entries & 64 insertions

▸ Slowfuzz generated inputs causing
monotonically increasing collisions

▸ No knowledge of the internals of the
hash function

29

USECASE: PHP’S DJBX33A HASH

▸ Multiple instances of ReDoS in the wild

▸ Backtracking can be catastrophic

▸ Handling of both regexes and inputs
- Evil Regexes
- Slowdowns on given inputs  

▸ Identifying evil regexes is a hard problem
- Widely varying complexity: linear to exponential
- Focus on super-linear & exponential matching

30

USECASE: REGEX PARSERS

regex_match(regex, string)

▸ Can SlowFuzz find evil regexes given a fixed input? 
 
 
 
 
 
 

31

USECASE: REGEX PARSERS / PCRE

▸ Can SlowFuzz find evil regexes given a fixed input?

- Yes! Without any knowledge of the regex logic 
 
 
 
 
 
 

32

USECASE: REGEX PARSERS / PCRE

▸ Can SlowFuzz find evil regexes given a fixed input?

- Yes! Without any knowledge of the regex logic 
 
 
 
 
 
 

33

USECASE: REGEX PARSERS / PCRE

▸ Can SlowFuzz find evil regexes given a fixed input?

- Yes! Without any knowledge of the regex logic 
 
 
 
 
 
 

▸ Example: (b+)+c

34

USECASE: REGEX PARSERS / PCRE

35

USECASE: REGEX PARSERS / PCRE

▸ 100 runs / 1 million generation each

▸ Regexes of 10 characters or less

▸ At least 31 regexes causing a slowdown 
with 90% probability

▸ At least 2 regexes with super-linear
matching with 90% probability

▸ At least 1 regex with exponential
matching with 45.45% probability

▸ Can SlowFuzz find inputs causing a slowdown on a fixed regex?

- Regexes from production WAFs

- 8 - 25% slowdowns  

36

USECASE: REGEX PARSERS / PCRE

37

USECASE: DECOMPRESSION / BZIP

▸ bzip2

▸ 250-byte inputs

▸ 300x slowdown on fixed input size

38

‣ SlowFuzz: automated detection of complexity bugs through fuzzing  

‣ Found non-trivial issues involving high performant code
- PHP’s hashtable implementation
- PCRE regular expression library
- bzip2 

‣ Evolutionary fuzzing as a generic means of code exploration
- Different objectives for different bug types
- Beyond code coverage maximization
- Objective vs Controls: Instrumentation, Fitness Functions, Mutations

CONCLUSION

