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g Birdsnap

We have built a digital field guide to 500 common North American bird species. It identities
birds in photos. The recognition problem is difficult because:

There are a large number of classes, some of which are nearly indistinguishable.

We mitigate the problem with two techniques:

One-vs-Most Classifiers

A Spatio-Temporal Prior
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: The Birdsnap Dataset

- 500 of the most common North American bird species, from Flickr
- 49,829 images

- Species labels confirmed on Mechanical Turk

- Bounding boxes and 17 part locations from Mechanical Turk

- Some images labeled with sex, age, and plumage

- Available at www.cs.columbia.edu/~tberg/
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One-vs-Most Classitiers

Some classes are nearly indistinguishable. Instead of one-vs-all classifiers, train one-vs-most
classifiers, excluding the k classes most similar to the positive class from training.
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Canada Goose

Cackling Goose One-vs-all classifier =~ One-vs-most classifier

Results: Better accuracy and more reasonable mistakes.
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——k =0 (r1: 64.9%, 15: 79.8%) |
——k =5 (r1: 66.5%, r5: 81.0%)

——k = 15 (r1: 66.6%, r5: 82.4%)
——k =50 (r1: 64.8%, r5: 83.0%)
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Background: Part-based One-vs-One Features [1] A

1. Choose two classes (e.g. i = common tern and j = Louisiana waterthrush)
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5. Train a linear SVM to separate the classes, then threshold the weights and retrain on
just the discriminative region to get a POOF.
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/. Repeat (e.g. with the Birdsnap dataset, can build millions of POOFs; we use 5000).

500

class pairs 2 base features

(13 - 12) part pairs
= 38,922,000 POOF's
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g A Spatio-Temporal Prior A

Given a bird image | captured at location x on date t, what is the probability the bird is of
species s?

P(I,x,t|s)P(s)
P(I,z,t)

P(s|I,x,t) =

Assuming conditional independence of | and (x, t) given s, we get
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From one-vs-most classifier Spatio-temporal prior

P(s|x, t)

Estimate spatio-temporal data from 75 million bird sighting records collected by eBird [2].
Problem: eBird data reflects bird distribution and bird-watcher distribution.

White-throated Sparrow sightings, January 12-17 All sightings, January 12-17

We use an adaptive kernel density estimate:
Yi—y
ZyieN(y),s 1 (ho(y))

ZyiEN(y) K (gz (_yy)) —— Density estimate for all species

Where y = (z,t), N(y) is a neighborhood of y, and K is a Gaussian kernel of width A,

—— Density estimate for species s

P(s|x,t) ~

P(s|x,t) estimate
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g Recognition Performance
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- Hold out 2443 images, 600k eBird checklists

- To generate a test sample: 0.9

- Choose random (s, x, t) from held-out checklists

o
[}

- Choose random held-out image of s
- 10,000 test samples
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- = = Labeled parts (r1: 79.9%, r5: 95.1%)

One-vs—-most + S—T prior (r1: 66.6%, r5: 82.4%
One-vs-all + S—T prior (r1: 64.9%, r5: 79.8%)
One-vs—most (r1: 48.8%, r5: 71.4%)
One-vs-all (r1: 48.5%, r5: 68.6%) [4]
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