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Some classes are nearly indistinguishable.  Instead of one-vs-all classifiers, train one-vs-most 
classifiers, excluding the k classes most similar to the positive class from training.

One-vs-Most Classifiers
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k = 0 (r1: 64.9%, r5: 79.8%)
k = 5 (r1: 66.5%, r5: 81.0%)
k = 15 (r1: 66.6%, r5: 82.4%)
k = 50 (r1: 64.8%, r5: 83.0%)

Canada Goose Cackling Goose One-vs-most classifierOne-vs-all classifier

Results: Better accuracy and more reasonable mistakes.
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Given a bird image I captured at location x on date t, what is the probability the bird is of 
species s?

A Spatio-Temporal Prior

Assuming conditional  independence of I and (x, t) given s, we get

From one-vs-most classifier Spatio-temporal prior

Estimate spatio-temporal data from 75 million bird sighting records collected by eBird [2].
Problem: eBird data reflects bird distribution and bird-watcher distribution.

White-throated Sparrow sightings, January 12-17 All sightings, January 12-17

estimate

We use an adaptive kernel density estimate:

Density estimate for species s

Density estimate for all species

Where
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Labeled parts (r1: 79.9%, r5: 95.1%)
One−vs−most + S−T prior (r1: 66.6%, r5: 82.4%)
One−vs−all + S−T prior (r1: 64.9%, r5: 79.8%)
One−vs−most (r1: 48.8%, r5: 71.4%)
One−vs−all (r1: 48.5%, r5: 68.6%) [4]

Recognition Performance
- Hold out 2443 images, 600k eBird checklists
- To generate a test sample:

- Choose random (s, x, t) from held-out checklists
- Choose random held-out image of s

- 10,000 test samples

1. Choose two classes (e.g. i = common tern and j = Louisiana waterthrush)

2. Choose a feature part and an alignment part (e.g. f = eye and a = back), align and crop

Background: Part-based One-vs-One Features [1]

4. Extract base features (e.g. b = gradient direction histograms (shown) or color histograms)

5. Train a linear SVM to separate the classes, then threshold the weights and retrain on
    just the discriminative region to get a POOF.

7. Repeat (e.g. with the Birdsnap dataset, can build millions of POOFs; we use 5000).

3. Divide cropped images into grids
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- 500 of the most common North American bird species, from Flickr

The Birdsnap Dataset

- 49,829 images

- Bounding boxes and 17 part locations from Mechanical Turk
- Species labels confirmed on Mechanical Turk

- Some images labeled with sex, age, and plumage
- Available at www.cs.columbia.edu/~tberg/

Birdsnap

http://birdsnap.com In the Apple App Store

We have built a digital field guide to 500 common North American bird species.  It identifies 
birds in photos.  The recognition problem is difficult because:

There are a large number of classes, some of which are nearly indistinguishable.

We mitigate the problem with two techniques:

One-vs-Most Classifiers
A Spatio-Temporal Prior


