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Abstract

Synchronous languages such as Esterel can execute a se-
ries of statements in a single “instant” of time. If this se-
ries spans a loop iteration then it is possible that a com-
putation local to the loop will have several distinct results
during that “instant”, which is referred to as schizophre-
nia. This makes the compilation of synchronous languages
into more traditional computation models (such as C code
or sequential logic) difficult. In a previous work [17], we
suggested to deal with schizophrenia through preprocessing
in the Esterel language extended with a non-instantaneous
jump statement. We now advocate for and experiment with
such a program transformation, establishing the correct-
ness, the completeness and the efficiency of our approach.

1. Introduction

In the previous decades the design of hardware circuits
benefited greatly from synchronous methods, providing au-
tomated tools and techniques for the mapping of RTL de-
scriptions down to optimized, placed-and-routed silicon im-
plementations. This was made possible through the com-
monality of underlying semantic models (Mealy machines,
netlists, sequential logic). Meanwhile the higher-level de-
scription models, used in simulation and “golden” specifi-
cations phases, often followed different paradigms.

We view the synchronous reactive language Esterel as
a high-level structured language which might reconcile the
upper-level description purpose with the lower-level strong
semantics ties with mathematical models allowing silicon
synthesis. It enjoys a rich set of imperative constructs in-
cluding sequential and parallel compositions, tests, loops,
preemption and suspension mechanisms, as well as local
declarations of variables and exceptions. Its semantics,
while being very expressive, is nevertheless fully synthe-
sisable and also amenable to efficient software generation.

In order to fulfill this program a number of issues have
to be solved. In synchronous languages as in synchronous
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hardware circuits time flows as a succession of discrete in-
stants. In synchronous circuits each gate or wire may only
assume one single value at each clock cycle (or at least
converge to one unique stable value). It is not the case in
synchronous languages, due to two phenomena known as
causality cycles and schizophrenia. We focus here on the
second issue.

In Esterel, loops may terminate and be reentered within
the same instant (clock cycle). Therefore, parts of loop bod-
ies may be executed several times during one instant. We
say that they may have a schizophrenic behavior.

Because of schizophrenia, compiling Esterel is difficult.
The fact is well established. In particular, the Esterel to
circuits translation of Berry [1, 3], the Quartz compiler of
Schneider [16], the Esterel to C compilers of Edwards [10]
and Potop [14] are linear in the absence of schizophrenia
problems, but quadratic in the worst cases of schizophrenia.

Such a complexity is neither specific to circuit genera-
tion, nor a particular problem of Esterel. It typically arises
from the combination of local declarations with the syn-
chronous paradigm. Local declarations are mandatory for
the sake of the programmer, for clear and compositional
programming. As a consequence, while hard schizophre-
nia problems are reported to be rare [3], schizophrenia has
to be correctly handled by compilers.

Schizophrenia may be handled by the mean of simple
loop unrolling (as the number of instantaneous executions
of a statement is statically bounded). This however gen-
erates unnecessarily large codes and circuits (exponential
worst-case growth).

Complex quadratic schemes have been developed to
compile schizophrenic programs more efficiently. They
typically require the expansion of Esterel into ad hoc in-
termediate formats, with fuzzy semantics. The most effi-
cient algorithm we are aware of, implemented in the Esterel
to circuits compiler from Ecole des Mines and INRIA [1],
has not been successfully adapted to software generation
yet. Thus, the need for a simple, formalized, efficient and
generic algorithm remains.

In the sequel, we shall describe a new program trans-
formation that rewrites any Esterel program into a non-



nothing do nothing
pause await next instant
signal S in p end declare S in p
emit S emit S
present S then p else q end if S is emitted...
trap T in p end declare/catch T
exit T raise exception T
p; q p followed by q
[p || q] p parallel q
loop p end repeat p forever

Figure 1. Pure Esterel

schizophrenic semantically equivalent program in the Es-
terel language extended with a simple non-instantaneous
jump statement, which we introduced and formalized in
[17]. By selectively applying this transformation to pro-
gram blocks selected by the static analysis we specified in
[18], we obtain a simple and efficient rewriting scheme.

The paper is organized as follows: in Section 2 we
briefly describe the Esterel language. We formally define
schizophrenia in Section 3. In Section 4, we introduce our
preprocessing for a kernel language. We combine it with
static analysis in Section 5 and extend it to the full language
in Section 6. We discuss our implementation in Section 7.

2. Esterel

Esterel [3, 4, 5, 7, 8] is a concurrent programming lan-
guage dedicated to reactive systems [9, 12]. It was born in
the eighties [6], and evolved since. In this work, we con-
sider the Esterel v5 dialect of Esterel [4], accepted by the
last academic compilers available from Ecole des Mines and
INRIA [1] or Columbia University [10].

Pure Esterel is the fragment of Esterel where data vari-
ables and data handling primitives are discarded. We shall
first concentrate on Pure Esterel (Sections 2.1 to 5).

Full Esterel nevertheless introduces an additional diffi-
culty: data are persistent. The program transformation we
initially define on Pure Esterel programs has to be further
refined to handle data. We shall return to Full Esterel and
address persistence in Section 6.

2.1. Syntax and Intuitive Semantics

An Esterel program runs in steps called reactions in re-
sponse to the ticks of a global clock. Each reaction takes one
instant. Primitive statements execute in zero-time except for
one pause instruction. When the clock ticks, a reaction
occurs. It may either finish the execution instantly or delay
(part of) it till the next tick, because of pause instructions.

Without loss of generality, we focus on the kernel of Pure
Esterel as defined by Berry in [3], which retains just enough

of the Pure Esterel language syntax to attain its full expres-
sive power. In addition, we do not consider the suspend
statement in the sequel. It raises no particular problem.

Figure 1 describes the grammar of this language, as well
as the intuitive behavior of its constructs. The non-terminals
p and q denote statements (i.e. programs), S signals and
T exceptions. Signals and exceptions are identifiers lexi-
cally scoped and respectively declared within statements by
signal and trap instructions.

2.2. Examples

Program 1 of Figure 2 emits A in the first instant of its
execution, then emits B and C in the second instant, then
emits D and terminates in the third instant. It takes three
instants to complete (three reactions).

Program 2 emits C in the first instant of its execution,
then emits A and D in the second instant, then emits B and
terminates in the third instant. Execution propagates in par-
allel branches in a deterministic synchronous way: one re-
action of the parallel composition is made of exactly one re-
action of each branch, until the termination of all branches.

The exit statement behaves as a goto to the end of the
trap block. An exception occurring in a parallel statement
causes it to terminate instantly. In Program 3, A and D are
emitted in the first instant, then B and E in the second and
final instant. As expected “emit C” is never reached. Note
that “exit T” does not prevent B to be emitted: exceptions
implement weak preemption. Exception declarations may
be nested. The outermost exception has priority.

“loop emit S; pause end” emits S at each instant.
It never terminates. Finite loops may be obtained by com-
bining loop and trap statements. Loop bodies may not
be instantaneous. They must either retain the control for
at least one instant or raise an exception. For example,
“loop emit S end” is not a correct program. Such a pat-
tern would prevent the reaction to reach completion. There-
fore, it is forbidden (cf. Section 2.4).

Program 4 does not emit O, as S is not emitted at the
time of the test. In an instant, a signal S is either present or
absent. A signal is present iff explicitly emitted (or set by
the environment in the case of unbound signals). In particu-
lar, the status of a signal does not depend on its status at the
previous instant.

In Program 5, O is emitted because of S, but not after S.
Both are present for the duration of the reaction.

2.3. Formal Semantics

The logical semantics of Esterel [3] defines the reactions
of a program p via a labeled transition system:

p
E′, k−−−→

E
p′



1. emit A; pause; emit B; emit C; pause; emit D
2. pause; emit A; pause; emit B || emit C; pause; emit D
3. trap T in [emit A; pause; emit B; pause; emit C || emit D; pause; exit T] end; emit E
4. signal S in emit S; pause; present S then emit O end end
5. signal S in [present S then emit O end || emit S] end

Figure 2. Examples

The integer k is the completion code of the reaction, the
program p′ is its residual:

• If k = 1 then this reaction does not complete the exe-
cution of p. It has to be continued by the execution of
p′ in the next instant.

• If k �= 1 then this reaction ends the execution of p:

– k = 0 if the execution completes normally,

– k ≥ 2 if some exception1 escapes from p.

The sets E of present signals and E′ of emitted signals
encode the I/Os of the reaction. The set E regroups the
signals emitted by p, thus E′ ⊂ E, and by the environment.
In other words, p reacts to inputs I with outputs O iff:

p
O, k−−→
I∪O

p′

An execution of p is a potentially infinite chain of re-
actions, such that all completion codes but the last one are
equal to 1. For example, in the finite case:

p
O1, 1−−−−→

I1∪O1
p1

O2, 1−−−−→
I2∪O2

...
On, k �=1−−−−−→
In∪On

pn

Figure 3 expresses the logical semantics of Esterel as a
set of deduction rules in a structural operational style. The
extra labels (top right-most position, and labels on signal
and parallel statements) will be discussed in Section 3.3.

For example “emit A; pause; emit B” with input I
emits A and does not terminate instantly (k = 1), with the
residual “nothing; emit B” remaining to be executed:

emit A; pause; emit B
{A}, 1−−−−→
{I,A}

nothing; emit B

2.4. Logical Correctness and Causality

A program is said to be logically correct iff there exists
exactly one deduction tree defining its reaction at any stage
of any execution (that is to say after any number of reactions
and for any sequence of inputs). This is not always so:

• loop nothing end is incorrect as no rule applies.
Instantaneous loop bodies (k = 0) are forbidden.

1Exceptions are numbered (T �→ kT ) according to priorities [3, 11].

• signal S in present S else emit S end end
is incorrect since no deduction tree may be built for the
empty set of inputs (for example). On the one hand, if
we suppose S absent for the duration of the reaction
then it is emitted. On the other hand, if we suppose S
present then it has no emitter.

• signal S in present S then emit S end end
is incorrect since two trees may be built for the empty
set of inputs. Intuitively, there is no way to tell whether
S is absent or present.

From now on, we shall only consider logically correct
programs. By definition, they have reactive (deadlock free)
and deterministic executions.

While logical correctness ensures that valuations of sig-
nals are unique, it does not take into account causality.
The following program, while being logically correct (S can
only be present), is not causal, since the emission of S de-
pends on a test on S:

signal S in
present S then emit S else emit S end

end

The logical semantics of Esterel can be refined into var-
ious semantics formalizing causality, such as the construc-
tive semantics [3]. Causality and causality analysis have
been extensively discussed. In the sequel, we shall consider
schizophrenia in the framework of the logical semantics as
we do not want to depend on causality analysis.

3. Schizophrenia

In Esterel, it may be possible for a statement to terminate
or exit and be restarted during the same reaction, that is to
say instantly restarted or instantly reentered.

3.1. Schizophrenic Signal Declarations

In the following example, the signal O is never emitted,
as the test always considers a fresh signal S, which is not
emitted at the time of the test.



nothing
∅, 0, ∅−−−→

E
nothing pause

∅, 1, ∅−−−→
E

nothing

exit T
∅, kT , ∅−−−−→

E
nothing emit S

{S}, 0, ∅−−−−−→
E

nothing

p
E′, k, L−−−−→

E
p′ k �= 0

loop p end
E′, k, L−−−−→

E
p′; loop p end

p
E′, k, L−−−−→

E
p′ q

F ′, l, L′
−−−−→

E
q′ m = max(k, l)

[p || q]n E′∪F ′, m, L�L′�{n}−−−−−−−−−−−−−→
E

[p′ || q′]n

S ∈ E p
E′, k, L−−−−→

E
p′

present S then p else q end
E′, k, L−−−−→

E
p′

p
E′, k, L−−−−→

E
p′ k = kT

trap T in p end
E′, 0, L−−−−→

E
nothing

S /∈ E q
F ′, l, L−−−−→

E
q′

present S then p else q end
F ′, l, L−−−−→

E
q′

p
E′, k, L−−−−→

E
p′ k �= kT

trap T in p end
E′, k, L−−−−→

E
trap T in p′ end

p
E′, 0, L−−−−→

E
p′ q

F ′, l, L′
−−−−→

E
q′

p; q
E′∪F ′, l, L�L′
−−−−−−−−−→

E
q′

p
E′, k, L−−−−→
E∪{S}

p′ S ∈ E′

signaln S in p end
E′\{S}, k, L�{n}−−−−−−−−−−−→

E
signaln S in p′ end

p
E′, k, L−−−−→

E
p′ k �= 0

p; q
E′, k, L−−−−→

E
p′; q

p
E′, k, L−−−−→
E\{S}

p′ S /∈ E′

signaln S in p end
E′, k, L�{n}−−−−−−−−→

E
signaln S in p′ end

Figure 3. Formal Semantics

loop
signal S in
present S then emit O end;
pause;
emit S

end
end

Starting from the second instant of execution, each re-
action involves two instances or incarnations of the signal
S: an old incarnation inherited from previous instant (as
pause is in the scope of the declaration of S) and a new
incarnation since this scope is left and instantly reentered.

Gates and wires in synchronous circuits may only as-
sume one single value at each clock cycle. Thus, compiling
synchronous languages with instantly reentered local decla-
rations – including Esterel – to circuits requires to carefully
distinguish between these incarnations.

Compiling Esterel to C may seem easier. We could trans-
late Esterel local signal declarations into C local variable
declarations. In such a scheme, the old incarnation of S
would be computed first, then the new one. While this
makes sense for the current example, it fails in general.

In the following example, while T is declared in se-
quence with S, the status of S cannot be decided without
knowing the status of A, thus without looking forward at
the “signal T in ... end” block.

signal A in
signal S in
present A then emit S end

end;
signal T in
present T then emit A end

end
end

By folding this code using a loop statement, we can
merge the roles of S and T and obtain a program where the
the value of the old incarnation of S depends on the value
of its new incarnation, rather than the other way around:

signal A in
loop
signal S in
present S then emit A end;
pause;
present A then emit S end

end
end

end

In summary, compiling instantly reentered signal decla-
rations, that is to say schizophrenic signal declarations, to
software code or synchronous hardware is difficult2.

2On the other hand, a simple translation of local signals into C global
variables is fine, as far as no local signal declaration is instantly reentered.



loop
signaln S in

present S then
emit O

end;
pause;
emit S

end
end

∅, 1, {n}−−−−−−→
∅

signaln S in
nothing;
emit S

end;
loop

signaln S in
present S then
emit 0

end;
pause;
emit S

end
end

∅, 1, {n,n}−−−−−−−→
∅

signaln S in
nothing;
emit S

end;
loop
signaln S in

present S then
emit O

end;
pause;
emit S

end
end

Figure 4. Schizophrenia

3.2. Schizophrenic Parallel Statements

Parallel statements may also terminate and be instantly
reentered, leading to complex behaviors. In the following
example, if input I is first present then absent, variable V is
incremented twice in the second instant of execution:

loop
present I then pause end; V:=V+1

||
pause

end

For reasons similar to those above (in Pure and Full Es-
terel), the behaviors of the several instances of an instantly
reentered parallel statement may be interdependent. There-
fore, we shall also identify instantly reentered parallel state-
ments, which we call schizophrenic parallel statements.

3.3. Formal Characterization

Instantly reentered statements generates intricate inter-
actions between they distinct incarnations. This point is of-
ten discussed [3, 13, 14, 15, 16, 18]. Beyond examples of
so-called schizophrenic behaviors, a few informal charac-
terizations of schizophrenia in Esterel have been described
(schizophrenic signals, programs...), or could be derived
from these discussions.

For example, schizophrenic programs are sometimes de-
fined as those programs that are not correctly compiled by
some naive compilation scheme [3]. Schizophrenic signal
declarations may be defined as those which do not com-
mute with enclosing loops [13]. Potentially schizophrenic
programs may also be defined by the mean of some static
analysis [18], etc. But to the best of our knowledge no sim-
ple formal definition of schizophrenia has been proposed
yet. We shall provide one here.

In Figure 3, we have instrumented Esterel logical se-
mantics in order to formally characterize schizophrenic pro-
grams as follows:

• We label signal declarations and parallel statements:

– signallabel ... in ... end

– [... || ...]label

• We add an extra component L to the labeled transition
system (top right-most position in Figure 3): the mul-
tiset of labels of a reaction, obtained by collecting the
labels of the statements executed during the reaction.

• We preserve labels in the rewriting which produces the
residual of the reaction.

We define:

• Schizophrenic reaction: a reaction is said to have a
schizophrenic behavior iff its multiset of labels con-
tains a repeated label.

• Schizophrenic program: a logically correct program
is said to be schizophrenic iff, being initially labeled
with pairwise distinct labels, there exists an execution
involving a schizophrenic reaction. Remark that this
definition does not depend on the initial labeling.

Figure 4 illustrates the process on our very first example
of schizophrenic program (instantly reentered signal decla-
ration). Initially, the program contains a unique signal dec-
laration, which we label n. The first reaction involves this
signal declaration, thus the multiset {n}. Because loop un-
rolling occurs, the residual now contains two declarations
with label n. In the second instant and thereafter, the label
n is encountered twice, leading to the multiset {n, n}.



4. Reincarnation

The programming style advocated by Esterel (local dec-
larations plus local concurrency plus imperative loops) nat-
urally leads to schizophrenic specifications. Thus, compil-
ers cannot afford to ignore or reject such program patterns,
and let the user deal with schizophrenia all by himself.

4.1. Naive Reincarnation

Rewriting schizophrenic programs into equivalent non-
schizophrenic programs has been proposed in [13]. The
method consists of recursively duplicating loop bodies:

nothing
dup
=⇒ nothing

signal S in p end
dup
=⇒ signal S in dup(p) end
...

loop p end
dup
=⇒ loop dup(p); dup(p) end

This program transformation is called reincarnation as
it explicitly distributes the several incarnations of a single
statement into several distinct bodies. In other words, one
statement having several incarnations is changed into sev-
eral statements, each of them having a unique incarnation.

First, it can be shown that p and dup(p) behave the same
in all contexts (technically, they are strongly bisimilar [2,
17] with respect to Esterel logical semantics).

In particular, if p cannot terminate instantly then dup(p)
cannot either. As a consequence, each loop body of a
rewritten logically correct program consists of a sequence
of two identical non-instantaneous blocks. Neither block
can be instantly left and reentered. Therefore, dup(p) is not
schizophrenic.

This would once and for all take care of schizophrenic
programs if the transformation was efficient enough. It is
not the case: dup(p) may be exponentially larger than p
because of nested unfoldings (cf. example in Section 4.4).

4.2. Esterel
sp

In order to get rid of schizophrenia by program rewrit-
ing, we propose to extend the Esterel language. We first
add pairwise distinct labels3 to pause statements, which
we denote “label: pause”. We then introduce in the lan-
guage the instruction “gotopause label”. It behaves as a
goto to the pause statement with corresponding label. For
example, S is not emitted by the reaction:

gotopause 1; emit S; 1: pause; emit T

∅, 1−−→
∅

nothing; emit T

3These labels are not related to those we used to define schizophrenia.

We have formalized the semantics of the extended lan-
guage, which we call Esterelsp in [17]. Restrictions have
to be imposed on the relative locations of pause and
gotopause statements. Intuitively, concurrent jumps to
sequential program blocks have to be forbidden. Other-
wise, gotopause behaves just as expected. In particu-
lar, gotopause cannot contribute to instantaneous loops,
causality problems or schizophrenia because these jumps
have non-instantaneous effects only, the target always be-
ing a pause statement.

For lack of space and need, we do not go into the de-
tails of the semantics of Esterelsp here. We shall introduce
gotopause statements in Esterel programs in a controlled
way, which ensures the correctness of the resulting Esterelsp

programs.

4.3. Reincarnation with Esterel
sp

In the sequel, we consider Esterelsp programs, that is to
say we suppose pause statements are always labeled with
pairwise distinct labels. Thanks to gotopause, we shall
now partially replicate loop bodies and define dupsp by re-
placing the rule:

loop p end
dup
=⇒ loop dup(p); dup(p) end

by rule:

loop p end
dupsp

=⇒ loop surf (p); dupsp(p) end

Intuitively, we shall only replicate the surface of each
loop body, that is to say the part of the loop body which is
instantly reachable. Function surf is recursively defined:

loop p end
surf
=⇒ surf (p)

p; q
surf
=⇒

if p may instantly terminate
then surf (p);surf (q)
else surf (p)

label: pause
surf
=⇒ gotopause label

Omitted rules correspond to simple recursive calls. A
loop body cannot be instantaneous, thus the first rule. If
p in p;q cannot be instantaneous then q cannot be reached
instantly, thus the second rule.

At the end of the first instant of execution of a rewritten
loop, the control goes from surf (p) to the “regular” copy of
p through gotopause statements (last rule). Therefore,
the execution will be restarted the “right” state. In other
words, provided that p is non-instantaneous, surf (p);p and
p are equivalent (strongly bisimilar). By recursion, for all
logically correct program p, the programs p and dupsp(p)
behave the same.

Moreover, surf (p) cannot terminate instantly if p can-
not. Therefore, if p is logically correct then dupsp(p) is not
schizophrenic.



p Γp Ωp

pause {1} {0, 1}
loop p end if 0 in Γp then error else Γp Ωp\{0}
nothing {0} {0}
signal S in p end Γp Ωp

emit S {0} {0}
present S then p else q end Γp ∪ Γq Ωp ∪ Ωq

p; q if 0 ∈ Γp then (Γp\{0}) ∪ Γq else Γp if 0 ∈ Ωp then (Ωp\{0}) ∪ Ωq else Ωp

[p || q] {max(x, y),∀x ∈ Γp,∀y ∈ Γq} {max(x, y),∀x ∈ Ωp,∀y ∈ Ωq}
trap T in p end Γp with substitution of kT by 0 Ωp with substitution of kT by 0
exit T {kT } {kT }

Figure 5. Static Analysis of Completion Codes of Reactions (Γ) and Executions (Ω)

4.4. Algorithm

We obtain a reincarnation algorithm that rewrites any
program p into a non-schizophrenic equivalent Esterelsp

program dupsp(p̂), by first labeling the pause statements
of the program p with pairwise distinct labels – we de-
note the result with p̂ – then computing the image of p̂ by
function dupsp . Since surf (p̂) does not contain loops, the
rewriting of p into surf (p̂) is linear, and dupsp(p̂) is at most
quadratically larger than p.

For example,

loop [p || loop q end] end

dup
=⇒

loop
[dup(p) || loop dup(q);dup(q) end];
[dup(p) || loop dup(q);dup(q) end];
end

dupsp

=⇒
loop
[surf (p) || surf (q)];
[dupsp(p) || loop surf (q);dupsp(q) end]
end

loop [p || loop [p || loop p end] end] end

dup
=⇒ 2 + 4 + 8 = 14 times p (exponential growth)

dupsp

=⇒ 2 + 3 + 4 = 9 times p (quadratic growth)

5. Efficient Reincarnation

In the example of last section, the parallel statement can-
not terminate, a fortiori be instantly restarted by the enclos-
ing loop. Therefore, there is no schizophrenia here, and no
need for program rewriting. In general, less expansion is
possible, provided we do some program analysis.

5.1. Static Analysis

In [18], we formalized the analysis of schizophrenia im-
plemented in the Esterel compiler from Ecole des Mines
and INRIA [1]. It relies on the computation of potential
completion codes, which we recall in Figure 5. We define
by structural induction:

• The over approximation Γp of the completion codes
the program p may produce in its first reaction4.

If p
E′, k−−−→

E
p′ then k ∈ Γp.

• The over approximation Ωp of the completion codes
the program p may produce at any stage of its execu-

tion. If p
E′

1, 1−−−→
E1

...
E′

n, k−−−→
En

pn then k ∈ Ωp.

The fact that p may terminate or exit and be instantly
restarted in some context depends on both p and the context.
For example, if the execution of p non-instantly terminates
with completion code k,

p is instantly restarted? k=0 k=kT

loop trap T in p;pause end end no yes
trap T in loop p end end yes no

We say that kT in the first example, and 0 in the sec-
ond one are unsafe completion codes. In [18] again, we
expressed the computation of an over approximation of the
set of unsafe completion codes of each statement of a pro-
gram (more exactly of the context of each statement of the
program). We do not recall it here as we shall embed this
computation within our reincarnation algorithm (recursive
computation of K in Figure 6).

If Ks/p is the over approximation of the set of unsafe
completion codes for the statement s within the program
p, then s may potentially terminate and be instantly reen-
tered in p if Ks/p ∩ Ωs is not empty. On the other hand, if
Ks/p ∩ Ωs = ∅ then s is not schizophrenic in p.

4If a loop may be instantaneous, the computation produces an error.



p dupsp(K, p)
nothing nothing
label: pause label: pause
gotopause label gotopause label
exit T exit T
emit S emit S
present S then p else q end present S then dupsp(K, p) else dupsp(K, q) end
loop p end loop dupsp(K ∪ {0}, p) end
trap T in p end trap T in dupsp(K[0 → kT ], p) end

p; q dupsp((if K ∩ Γq = ∅ then K\{0} else K ∪ {0}), p);
dupsp((if 0 ∈ Γp then K else ∅), q)

signal S in p end if K ∩ Ωp = ∅ then signal S in dupsp(∅, p) end
else signal S in surf (p) end; signal S in dupsp(∅, p) end

[p || q] if K ∩ Ω[p || q] = ∅ then [dupsp(∅, p) || dupsp(∅, q)]
else [surf (p) || surf (q)]; [dupsp(∅, p) || dupsp(∅, q)]

Figure 6. Reincarnation with Static Analysis

5.2. Combining Analysis and Reincarnation

Schizophrenia arises from the nesting of signal declara-
tions or parallel statements within loops. Instead of system-
atically unrolling whole loop bodies, we could (i) expand
signal declarations or parallel statements only, and (ii) con-
dition expansion on the result of our static analysis. These
two ideas lead to a new definition of dupsp in Figure 6, surf
remaining unchanged.

Function dupsp is now context-dependent. It takes two
arguments: the statement p to rewrite and the (initially
empty) set K of potentially unsafe completion codes for p.

As announced, loops no longer replicate code on their
own. Moreover, signal declarations and parallel statements
are now selectively expansed if potentially schizophrenic
(K ∩ Ω... �= ∅).

5.3. Algorithm

The reincarnation algorithm we propose for an Esterel
program p consists of traversing p a first time to compute Γ
and Ω and label p with pairwise distinct labels, producing
p̂, then computing dupsp(∅, p̂). For example,

loop
signal S in
present S then emit O end;
pause;
emit S

end;
present I then emit O end

end

is rewritten into:

loop
signal S in
present S then emit O end;
gotopause 1;

end;
signal S in
present S then emit O end;
1: pause;
emit S;

end;
present I then emit O end

end

Further code size reduction in replicated statements,
such as the removal of the unreachable test (in italic) can
be achieved via standard dead code elimination techniques.

Again, dupsp(∅, p̂) may be quadratically larger than p in
the worst case. But this last algorithm is in practice quasi-
linear, as we shall measure in Section 7, and in the absence
of potentially schizophrenic statements, there is no expan-
sion at all5.

6. Reincarnation in Full Esterel

Full Esterel adds to Pure Esterel the ability to manipu-
late data of various kinds. The good news is that data do not
lead to more schizophrenia problems. Therefore, extend-
ing our characterization and static analysis to Full Esterel
is straightforward. The bad news is it breaks our rewriting
scheme.

5In particular, the function p �→ dupsp(∅, p) is idempotent.



Let’s consider an example where a variable is declared
within a schizophrenic signal scope (with a var statement):

loop
signal S in
var V in ...; pause; ... end

end
end

is rewritten into:

loop
signal S in

var V in ...; gotopause 1; ... end
end;
signal S in

var V in ...; 1: pause; ... end
end

end

Unlike signal statuses, variables retain their values be-
tween instants. Thus, duplicating the declaration of V and
jumping from one declaration to the other one, changes the
semantics of the program.

There are two obvious fixes. First, we may move dec-
larations of data (but not initializations!) up in the abstract
syntax tree, using alpha-renaming when needed. In our ex-
ample, we obtain:

loop
var V in
signal S in ...; gotopause 1; ... end;
signal S in ...; 1: pause; ... end

end
end

Second, we may introduce static aliasing in Esterelsp,
expressing that the two distinct declarations of V in the
naive rewriting in fact correspond to a unique memory cell.
We may index variables before expansion for example, thus
planning memory allocation in advance:

loop
signal S in

var V@1 in ...; gotopause 1; ... end
end;
signal S in

var V@1 in ...; 1: pause; ... end
end

end

We have chosen the latter solution in our implementa-
tion. This technique can be applied to all data defined in
Full Esterel.

7. Implementation

We have designed an algorithm that translates any Es-
terel program into a non-schizophrenic equivalent Esterelsp

program, by reshaping potentially schizophrenic signal dec-
larations and parallel statements.

Using this algorithm, we have implemented a prototype
compiler for Full Esterel into digital sequential circuits,
generating sc6 files6. The compiler code consists of about
5000 lines of OCaml, structured as follows:

1. parsing and macro expansion
2. link (i.e. source-level inlining of submodules)
3. static analysis and reincarnation
4. compilation (of non-schizophrenic programs)
5. a bit of boolean optimization (for sc6 compliance)

Relevant to our discussion are Steps 3 and 4 and their re-
lationship. Step 3 rewrites linked macro-expanded Esterel
source code using the algorithm we described in previous
section. Step 4 essentially implements the naive Esterel
to Circuits translation (for non-schizophrenic programs) of
Berry [3], in which we incorporate gotopause and data.

Compiling gotopause is straightforward:

• In our circuit generator, we allocate as usual one bit-
register per pause statement. But in addition to the
regular connection of one wire to the input pin of
this register required by the pause statement itself,
we connect (through an or gate) one extra wire per
gotopause statement with corresponding label.

• In general, Esterel compilers are based on internal
representations of programs as graphs, that are ex-
pressive enough to directly support the addition of
gotopause.

We have conducted some early experiments, summa-
rized in Table 1. We count the number of statements (after
macro expansion) in programs of various kinds and sizes
(from [3] and [14]), before and after reincarnation, using
both the algorithms of Sections 4.4 and 5.3. In the absence
of static analysis, the expansion ratio is unacceptable. With
static analysis however, it remains low in practice7.

What makes our compiler architecture really attractive in
our view is the combination of the following properties:

• Step 4 is completely independent from Step 3. In other
words, the compilation phase does not need to know
anything about the static analysis/reincarnation phase.
They can be implemented independently8.

6Supported by Ecole des Mines and INRIA, the sc6 format defines a
normalized circuit representation, which can in turn be converted into C
programs by existing tools [1].

7We expect to achieve a tighter expansion with dead code elimination in
“global” (not implemented yet). The “p18” program is designed to trigger
as much expansion as possible for its size.

8Of course, a shared parser is a good idea.



no reincarnation algorithm (4.4) algorithm (5.3) description
global 10286 566585 16867 avionics man-machine interface
cabine 7644 67680 8020 avionics cockpit interface
atds100 890 1372 990 video generator
ww 432 833 439 wristwatch
tcint 403 725 418 turbochannel bus
P18 28 86 58 multiple reincarnation
abro 14 18 14 tiny synchronization protocol

Table 1. Numbers of Kernel Statements

• Step 3 output being an Esterelsp program, is still es-
sentially an Esterel program, as Esterelsp preserves the
syntax and the semantics of Esterel. Instead of having
to cope with schizophrenia, one programmer (respec-
tively algorithm) just has to understand (respectively
accept) simple, fully formalized gotopause state-
ments.

• Even with this complete separation, the generated code
is good. Quadratic worst-case complexity is standard
[1, 10, 3, 14, 16]. Thanks to static analysis, our al-
gorithm is quasi-linear in practice. In particular, it is
just as effective9 as the compiler from Ecole des Mines
and INRIA [1] which internally uses a static analysis
of equal power.

While former compiler architectures have already ex-
posed some of these benefits, ours is the first one to gather
them all. In particular, in order to add a native fast C back-
end to our compiler, we shall reuse the frontend made of the
full first three steps of our current compilation chain.

8. Conclusion

While semantics usually define loops via loop unrolling,
i.e. code replication, efficient implementations replace them
by iterated traversal of a single loop body. In the case of
synchronous languages however the trick does not work be-
cause of schizophrenia problems.

In this paper, we thoroughly study schizophrenia in Es-
terel, starting from definition up to implementation. Our
key contributions are: (i) a simple characterization of
schizophrenia based on execution traces, (ii) a program
transformation that completely gets rid of schizophrenia at
the expense of the introduction of a non-instantaneous goto
in Esterel. Our preprocessing is generic and efficient. It can
be used as a starting point for the production of efficient
software code as well as efficient synchronous hardware.
It is also fully formalized, thus amenable to certified code
generation.

9Both the circuits produced and the complexity (duration) of the com-
pilation are essentially the same.
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