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Abstract. To what extent can a computation be made “simpler” by settling for
computing a randomized encoding of the output? Originating from Yao’s seminal
idea of garbled circuits, answers to this question have found applications in cryp-
tography and elsewhere. We will survey the state of the art on different flavors of
this question that are motivated by different problems in secure computation and
correspond to different notions of simplicity.

1. Introduction

Suppose that a weak client holds a sensitive input x and wishes to reveal f(x) to a strong
server by sending a single message to the server. The client cannot just send x since this
reveals more than just f(x). On the other hand, the client is too weak to compute f on
its own. Can the client’s job be made easier by settling for computing some encoding ŷ
of y = f(x)?

Using a traditional (deterministic) encoding is not very helpful in this context. For
instance, if f is a boolean function, then the encodings ŷ0, ŷ1 of the two possible output
values must differ in some position i. In this case, computing the i-th bit of the encoded
output is as difficult as computing f . However, by allowing ŷ to be a randomized en-
coding of y, this relaxed notion of computation turns out to be surprisingly powerful.
More concretely, we would like to replace f(x) by a “simpler” function f̂(x, r) such that
a sample ŷ from the output of f̂ , induced by a uniform choice of r, conveys the same
information about x as f(x). The latter can be broken into a correctness requirement,
asserting that the output f(x) can be decoded from f̂(x, r) (without knowing r), and a
privacy requirement, asserting that the output distribution of f̂(x, r) induced by a ran-
dom choice of r can be simulated given f(x) alone (without knowing x). We will also
consider natural relaxations of the privacy requirement to statistical or computational in-
distinguishability, and will typically require that a representation of f̂ and its associated
decoder and simulator (say, using boolean circuits) can be efficiently generated from a
representation of f . See Section 3 for formal definitions. We refer to the function f̂ as a
randomized encoding of f , or simply as an encoding of f .
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Note that correctness alone and privacy alone can be satisfied by trivial functions f̂
(e.g., f̂(x, r) = x and f̂(x, r) = 0, respectively). However, the combination of the two
requirements is a non-trivial relaxation of the usual notion of computing.

As an example, let x ∈ Fp where p is a large prime, and consider the function
f(x) which outputs 1 if x is a quadratic residue in the field Fp (namely, there exists
y ∈ Fp such that y2 = x) and outputs −1 otherwise. Computing f(x) can be done by
raising x to the power of (p − 1)/2. A computationally simpler randomized encoding
of f is f̂(x, r) = r2x, where r is uniformly distributed over all nonzero elements of
F. Correctness follows from the fact that f(x) = f(r2x) for all r (hence f(x) can be
decoded from f̂(x, r) by simply applying f ), and privacy from the fact that f̂(x, r) is
uniformly distributed over all inputs x′ such that f(x′) = f(x).

Going back to the motivating question, if f admits an encoding f̂ which is simple
enough for the client to compute, the client can communicate f(x) to the server by
picking a random r and sending ŷ = f̂(x, r). By the correctness and privacy properties
of f̂ , the server can recover y = f(x) from ŷ but cannot obtain additional information
about x.

Randomized encodings of functions have found many other applications in cryp-
tography and elsewhere. Different applications motivate different notions of simplicity
which the encoding f̂ should obey. In Section 2 we informally survey some of the appli-
cations in the area of secure computation, the notions of simplicity which they motivate,
and known results about randomized encodings which satisfy these notions of simplicity.
Following formal definitions and some preliminaries (Section 3), constructions of ran-
domized encodings are presented in Section 4. We conclude in Section 5 by discussing
some open questions.

2. Overview of Applications and Known Results

In this section we survey different types of randomized encodings and their applications,
focusing mainly on the area of secure computation. We refer the reader to [Can00,Can01,
Gol04] for a general background on secure computation and to [App11b,BHR12b] for a
broader overview of applications of randomized encodings in other areas of cryptogra-
phy.

2.1. Decomposable Encodings

The first application of randomized encodings in cryptography dates back to Yao’s sem-
inal idea of using garbled circuits for secure two-party computation, typically attributed
to [Yao86]. The randomized encoding f̂ implied by Yao’s construction has the follow-
ing property: every output bit of f̂ depends on at most a single bit of input xi (but may
arbitrarily depend on the randomness r). Hence, the output of f̂ can be decomposed
into f̂(x, r) = (f̂0(r), f̂1(x1, r), . . . , f̂n(xn, r)). Equivalently, the randomness r deter-
mines a string ŷ0 (referred to as a “garbled circuit”) and n pairs of strings (ŷi,0, ŷi,1)

(referred to as “keys”) such that the output of f̂ consists of ŷ0 along with the n strings
ŷi,xi

selected by the bits of x. We refer to an encoding f̂ which satisfies this property as
a decomposable randomized encoding.



Yao’s construction of decomposable encodings is polynomial in the circuit size
of f , but it is only computationally private. (When referring to asymptotic efficiency
of randomized encodings, we implicitly assume there is a compiler which converts
a representation of f into a corresponding representation of f̂ .) For weaker repre-
sentation models, such as formulas and branching programs, there are efficient gen-
eral constructions of decomposable encodings which satisfy the perfect notion of pri-
vacy [Kil88,FKN94,IK97,IK02,Kol05]. Such constructions will be described in Sec-
tion 4.

To summarize the state of the art on efficient constructions, Yao’s construction im-
plies that every polynomial-time computable function admits a polynomial-size (and
polynomial-time computable) decomposable encoding with computational privacy, as-
suming the existence of a one-way function. Moreover, every function in the complexity
class NC1 (capturing logarithmic-depth circuits with bounded fan-in) or in various loga-
rithmic space classes (such as deterministic, non-deterministic, and counting log-space)
admits a polynomial-size decomposable encoding with perfect correctness and privacy.
There are also some natural functions which are conjectured not to be in these classes
but still admit a polynomial-size, perfectly private decomposable encoding. These in-
clude the quadratic residuosity function and other functions which have certain random
self-reducibility properties [FKN94,DGRV11,IKP12].

In the following we describe applications of decomposable encodings in the area of
secure computation.

Secure two-party computation in the OT-hybrid model. The decomposition property of
f̂ makes it useful for secure two-party computation of f via parallel invocations of 1-out-
of-2 oblivious transfer [Rab81,EGL85]. It is convenient to describe the protocol in the so-
called OT-hybrid model, where it is assumed that there is a trusted oblivious transfer (OT)
oracle which receives a pair of messages (m0,m1) from one party and a choice bit b from
another party, and delivers the selected messagemb to the latter party. We further assume
that multiple instances of the OT oracle can be invoked in parallel. By using a suitable
composition theorem [Gol04,Can00,Can01], this oracle can be replaced by a protocol
which securely realizes oblivious transfer. Let x = (xA, xB) where xA = (x1, . . . , xa)
is Alice’s input and xB = (xa+1, . . . , xn) is Bob’s input. The following protocol reveals
f(x) to Bob while hiding all additional information:

• Alice picks a random input r for f̂ . She computes ŷ0 = f̂0(r) and n pairs of
messages ŷi,c = f̂i(c, r) for 1 ≤ i ≤ n and c = 0, 1.

• Alice and Bob invoke n− a parallel instances of oblivious transfer. In instance i,
a+ 1 ≤ i ≤ n, Bob selects from the pair of messages (ŷi,0, ŷi,1), which are both
known to Alice, the message ŷi,xi

. In parallel, Alice sends to Bob the messages
ŷ0 and ŷi,xi

for 1 ≤ i ≤ a.
• Bob, who now holds the entire encoding ŷ = f̂(x, r), decodes f(x) from ŷ.

Viewed as a protocol in the OT-hybrid model, Alice does not receive any message, and
the messages received by Bob (from Alice and the OT oracle) reveal the encoding ŷ =
f̂(x, r) and nothing else about xA or r. It thus follows from the privacy of f̂ that the
protocol is secure against passive corruptions. The protocol is also secure against an
actively corrupted Bob since any input he feeds into the OT oracle corresponds to an
honest behavior on some valid input xB . However, the protocol may not be secure against
an actively corrupted Alice, since the inputs she feeds into the OT oracle may not be



consistent with a valid output of f̂ . See [IPS08,IKO+11] for variants of this protocol
which offer security against an actively corrupted Alice with no additional interaction.

Computing on encrypted data. A scheme for computing on encrypted data [RAD78,
SYY99] allows Bob to publish an encryption c of his input w such that any other party
Alice can efficiently compute an encryption c′ of g(w) for a function g of her choice.
Given c′ and Bob’s private randomness, Bob should be able to decrypt g(w) but he
should learn no additional information about g (except, perhaps, an upper bound of its
description size). A solution to this problem can be obtained by applying an OT-based
protocol as above to the universal function f(g, w) = g(w). Using a 2-message imple-
mentation of oblivious transfer [NP01,AIR01,PVW08], the resulting protocol involves a
single message of Bob followed by a single message of Alice. Bob’s message can then
be viewed as an encryption c of his input w and Alice’s message as an encryption c′ of
the output g(w).

A two-message protocol as above can also be viewed as a fully homomorphic encryp-
tion scheme which has the “function privacy” property (namely, the function g remains
hidden), but does not have the “compactness” property (namely, the encrypted output can
be bigger than the description length of g) [Gen09]. Variants which protect each party
against a malicious behavior of the other were considered in [CCKM00,HK07,IKO+11].
“Multi-hop” variants which allow a sequence of computations gi on an encrypted input
were considered in [CCKM00,GHV10].

Private simultaneous messages protocols. A different application of decomposable
randomized encodings to secure computation is in the non-interactive model of Feige,
Kilian, and Naor [FKN94,IK97]. In this model, the input x for f is partitioned between
k parties, whose goal is to communicate f(x) to an external referee without revealing
additional information about x. To this end, the parties are assumed to share a common
source of randomness r which is unknown to the referee. The application of decompos-
able encodings to protocols in this model is straightforward: for each input bit xi, the
party who holds this input sends f̂i(xi, r) to the referee. The message f̂0(r) can be sent
by any of the parties. This protocol too is only secure in the presence of passive cor-
ruptions. Variants of the protocol that offer security against active corruptions are given
in [FKN94,IKP10].

Arithmetic variants. In the above we viewed the input x as a bit-string. In applications
that involve arithmetic computations over a ring R, it is useful to consider an arithmetic
generalization of decomposable encodings in which the input x and output ŷ are viewed
as vectors overR. In this case, we would like every entry of ŷ to be an affine function of a
single input entry xi; that is, every output entry can be written as a(r) ·xi+b(r) for some
input entry xi and arbitrary functions a, b of r. (The original definition of decomposable
encoding coincides with this arithmetic variant over the binary field.) Efficient imple-
mentations of decomposable arithmetic encodings for arithmetic formulas and branching
programs over finite rings are given in [IK97,IK02,CFIK03] and for arithmetic circuits
over the integers in [AIK11].

A decomposable arithmetic encoding can be securely evaluated by using parallel
calls to an oracle which implements the following arithmetic extension of oblivious trans-
fer: Alice’s input is a pair of ring elements (a, b), Bob’s input is a ring element x, and
Bob’s output is ax+ b. Efficient protocols for securely realizing such an oracle are given
in [NP06,IPS09,DPSZ12].



Low online complexity. Settling for computational privacy, Yao’s decomposable en-
coding has the following useful feature: the time required for computing the outputs
f̂1(x1, r), . . . , f̂n(xn, r) which depend on x is independent of the complexity of f . This
implies that an offline preprocessing phase in which f̂0(r) is computed before the input
x is available can be used to make the online complexity of computing f̂(x, r) much
smaller than the complexity of computing f(x). (In fact, it is easy to convert any decom-
posable encoding f̂ into an encoding f̂ ′ which has this feature by letting f̂ ′0(r′) include
permuted, encrypted copies of the outputs f̂i(0, r), f̂i(1, r), and letting f̂ ′i(xi, r

′) reveal
a short key which decrypts f̂i(xi, r).) The low online complexity of decomposable en-
codings can be used towards minimizing the online complexity of secure computation
and interactive proofs [GGP10,AIK10b]. It should be noted, however, that the traditional
privacy definition of decomposable randomized encodings only guarantees privacy un-
der the assumption that the online input x is chosen independently of the offline out-
put f̂0(r). See [BHR12a,AIKW12] for positive and negative results on decomposable
encodings which remain private even when x can be adaptively chosen based on f̂0(r).

Applications of decomposable encodings beyond secure computation include func-
tional encryption [SS10,GVW12], one-time programs [GKR08,GIS+10,BHR12a], en-
cryption schemes with security against key-dependent messages [BHHI10,App11a,
BHR12b], and others. We refer the reader to [App11b,BHR12b] for a more extensive
survey of decomposable encodings and their applications.

2.2. Low-Degree Encodings

A different notion of simplicity which is useful for secure computation is a low algebraic
degree. Here we consider both the input x and the random input r as vectors over a finite
field F, and view f̂(x, r) as a mapping f̂ : Fn×Fm → Fs. We say that f̂ has degree d if
each of the s outputs of f̂ can be written as a polynomial in x and r whose total degree
is at most d. (Note that both x and r count towards the degree.) We will often consider
the question of encoding a boolean function f : {0, 1}n → {0, 1}l, in which case the
correctness and privacy of f̂ are only required for inputs x ∈ {0, 1}n, but we will also
consider arithmetic functions f : Fn → Fl.

Randomized encodings with a low algebraic degree are also referred to as random-
izing polynomials. Their study was initiated in [IK00] and later extended to stronger
notions of simplicity [AIK06b,AIK09,AIK10b]. Ignoring efficiency, it is known that a
degree-3 encoding exists for every function f over any finite field F. Moreover, regard-
less of the field F or the encoding size, it is known that for most functions f , the degree
of f̂ cannot be lower than 3 if one insists on perfect privacy [IK00]. It is open whether
a degree-2 encoding with statistical or computational privacy exists for all functions f .
The question is equivalent to the existence of such encodings for the concrete Boolean
function f(x1, x2, x3, x4) = (x1 ∧ x2 ∧ x3)⊕ x4.

For any constant degree bound d, a degree-d encoding can be converted to a degree-
3 encoding of the same function with polynomial overhead. Hence, we will use the terms
“low-degree encoding” and “degree-3 encoding” interchangeably. The natural complex-
ity classes for which polynomial-size low-degree encodings are known to exist are sim-
ilar to the classes for which polynomial-size decomposable encodings are known to ex-
ist (see Section 2.1 above). This is not a mere coincidence: every low-degree encoding
can be converted into a decomposable encoding with a polynomial overhead. One minor



difference is that the existence of polynomial-size (computationally-private) low-degree
encodings for all polynomial-time computable functions relies on the existence of a one-
way function in NC1 or in similar classes [AIK06a,HRV10], whereas for decomposable
encodings any one-way function suffices. Also, there are natural complexity classes (such
as non-deterministic logspace) for which all known constructions of low-degree encod-
ings require to settle for either statistical correctness or statistical privacy [IK02], whereas
perfect correctness and privacy are possible for decomposable encodings. Whether ef-
ficient statistical (or perfect) low-degree encodings exist for all polynomial-time com-
putable functions is a major open question. There is evidence against this possibility
for a useful special class of degree-3 encodings, namely those that have degree 2 in the
randomness [IKP12].

Low-degree randomized encodings were initially motivated by the goal of minimiz-
ing the round complexity of secure computation [IK00]. The underlying observation is
that in most natural protocols, the round complexity grows linearly with the multiplica-
tive depth of an arithmetic circuit (with fan-in 2) computing the functionality. This holds
both for protocols which assume an honest majority [BGW88,CCD88] and for proto-
cols which do not assume an honest majority [GMW87]. Hence, by securely evaluating
a low-degree encoding f̂ of a higher degree functionality f one can reduce the number
of rounds required for computing f . More specifically, a degree-3 encoding of f can be
combined with a secure protocol for evaluating degree-3 polynomials to yield a secure
protocol for f . As a concrete application, this yields general 2-round k-party protocols
(over secure point-to-point channels) which are secure against t < k/3 passively cor-
rupted parties. The same result holds in the presence of active corruptions, assuming
that the adversary is allowed to choose which subset of the honest parties receive their
output [IKP10].

We now give a more detailed overview of the application to round-efficient secure
computation. Fix a finite field F and consider functionalities defined over inputs in Fn.
For simplicity, we assume here that all functionalities receive an input from each party
and deliver the same output to all parties; this can be extended, via a standard reduction,
to functionalities which deliver different outputs to different parties.

As noted above, a low-degree randomized encoding f̂ of f reduces the task of se-
curely computing f to the task of securely computing the lower-degree functionality f̂ .
However, here f̂ must be treated as a randomized functionality, since its random input r
must remain secret. We show that it is in fact sufficient to securely compute a low-degree
deterministic functionality related to f̂ in order to securely compute f .

Concretely, suppose that every deterministic k-party functionality g of algebraic de-
gree d can be realized by a protocol Πg using ρ communication rounds. Now, suppose
we are given a k-party functionality f(x1, . . . , xk) that has degree df > d. A ρ-round
protocol Πf for f can be obtained from a degree-d encoding f̂((x1, . . . , xk), r) of f as
follows. We view f̂ as a randomized k-party functionality whose internal randomness
is r. To reduce the secure evaluation of f̂ to that of a deterministic functionality of the
same algebraic degree, we use a standard reduction of randomized functionalities to de-
terministic functionalities (cf. [Gol04]). Define a deterministic k-party functionality g by
g((x1, r1), . . . , (xk, rk)) = f̂((x1, . . . , xk),

∑k
i=1 ri), where each ri is a vector over F

of the same length as r. Note that the degree of g is the same as that of f̂ . Given an ideal
oracle access to g, a secure protocol Πf for f may proceed as follows:



• Each party Pi, on input xi, picks ri uniformly at random and provides g with the
input (xi, ri).

• Let ŷ denote the output of g. The output y of Πf is obtained by applying the
decoder of f̂ to ŷ.

The security of Πf holds for any number of (passively or actively) corrupted parties, in
almost every model for secure computation from the literature.2 Using suitable composi-
tion theorems [Can00,Can01,Gol04], we can obtain a ρ-round protocol for f by invoking
the given ρ-round protocol Πg for g to emulate the ideal oracle call to g.

2.3. Local Encodings

A final simplicity feature we will discuss is “locality”. This feature is motivated by the
goal of minimizing the parallel time complexity of cryptographic computations.

For a positive integer d, we say that a function g : {0, 1}n → {0, 1}l has output
locality d if each of its output bits depends on at most d input bits, and it has input locality
d if each of its input bits influences at most d output bits. If g : {0, 1}∗ → {0, 1}∗ has
constant output locality (namely, there is a constant d such that each of its restrictions
gn : {0, 1}n → {0, 1}l(n) has output locality d), then g is said to be in NC0. The class
NC0 can be considered to capture “constant parallel time,” since a function in this class
can be computed by a family of boolean circuits with bounded fan-in and constant depth.
If g further has constant input locality, then this constant-depth family can additionally
have bounded fan-out.

We say that the randomized encoding f̂(x, r) has (input or output) locality d, if it has
locality dwhen viewed as a function of both x and r. Note that in contrast to the previous
notion of decomposable encodings, the bits of r also count towards the locality. In fact,
a decomposable encoding as in Section 2.1 can be equivalently defined as an encoding
f̂(x, r) such that for any fixed r0 the function g(x) = f̂(x, r0) has output locality 1.

It is known that every function f(x) admits a randomized encoding f̂(x, r) with
output locality 4 [AIK06b]. Moreover, the efficiency of such encodings is equivalent to
that of low-degree encodings (see Section 2.2) up to a polynomial overhead. In contrast,
encodings with constant input locality only exist for restricted function classes which
include all linear functions but do not include all quadratic functions [AIK09]. An even
stronger notion of locality, which takes the physical distance between inputs and out-
puts into account, was considered in [AIK10a] and motivated by the goal of efficiently
implementing cryptographic primitives on cellular automata.

The application of local encodings for reducing the parallel complexity of crypto-
graphic computations is as follows. Suppose that f is a cryptographic function; for in-
stance, f may compute a one-way function, a public key encryption, or the next mes-
sage function of a secure computation protocol. The idea is that instead of computing
y = f(x), one can pick r at random and compute ŷ = f̂(x, r). In cases where some

2An exception is the case of security against an adaptive adversary who may eventually corrupt all k par-
ties [CFGN96,GS12]. Unless honest parties are allowed to erase their randomness ri, a simulator for proving
the security of Πf should first simulate ŷ given y and then, after learning the inputs xi, generate simulated
random inputs ri (which determine the randomness r for f̂ ) consistently with xi and ŷ. While this can be
done for statistically private low-degree encodings that apply to low complexity classes such as NC1, it is not
known to be possible for any (computationally private) low-degree encoding scheme which efficiently applies
to all polynomial-time computable functions.



receiver should make use of y, the receiver applies the decoder of f̂ to compute y from
ŷ. But in some cases the output ŷ can be used without decoding. For instance, when
f is a one-way function, the function f̂ is a one-way function even when viewed as
a deterministic function of (x, r). The same holds for pseudorandom generators and
collision-resistant hash functions, assuming that f̂ satisfies some additional regularity
properties [AIK06b]. One corollary is that the existence of one-way functions and non-
trivial pseudorandom generators in NC0 follows from the existence of one-way func-
tions in NC1, which in turn follows from most standard intractability assumptions in
cryptography.

Local randomized encodings are also useful for obtaining parallel implemen-
tations of primitives outside the domain of cryptography, such as small-bias gen-
erators [AIK06b], proof verification and decoding [GGH+07], and program check-
ing [GGH+08,AIK10b].

We finally note that by applying the above encoding techniques on top of each other,
it is possible to encode any function f : {0, 1}n → {0, 1}l by a randomized encoding
f̂(x, r) which simultaneously enjoys all of the simplicity features we discussed: it is
decomposable, has algebraic degree 3 over the binary field, and has output locality 4.

3. Definitions

In this section we define the general notion of randomized encodings of functions and
discuss some of its useful properties. We start with the simplest variant, of a perfectly
correct and private encoding.

Definition 3.1 (Randomized encoding) Let X,Y, Ŷ , R be finite sets and let f : X →
Y . We say that a function f̂ : X × R → Ŷ is a randomized encoding of f , if it satisfies
the following requirements:

• Correctness. There exists a function Dec, called a decoder, such that for every
x ∈ X and r ∈ R we have Dec(f̂(x, r)) = f(x). Equivalently, for any x, x′

such that f(x) 6= f(x′), the random variables f̂(x, r) and f̂(x′, r′) induced by a
uniform choice of r and r′ from R have disjoint support sets.

• Privacy. There exists a randomized function Sim, called a simulator, such that
for every x ∈ X , the distribution Sim(f(x)) is identical to the distribution of
f̂(x, r) induced by a uniformly random choice of r from R. Equivalently, for any
x, x′ such that f(x) = f(x′), the random variables f̂(x, r) and f̂(x′, r′) are
identically distributed.

The above definition treats f as a finite function and is not concerned with the ef-
ficiency of f̂ , Dec and Sim. In cryptographic applications, one is typically interested in
obtaining an efficient compiler which maps a representation of f to representations of
f̂ ,Dec, and Sim. Most of the constructions we will describe in Section 4 implicitly de-
fine a polynomial-time compiler which given some representation of f (e.g., by a circuit,
a formula, or a branching program) outputs a circuit representation of f̂ ,Dec, and Sim.

It is often useful to relax the correctness and privacy guarantees of randomized en-
codings. We define such relaxations below.



Definition 3.2 (Relaxed correctness and privacy) Let X,Y,R, Ŷ , f, f̂ be as in Defini-
tion 3.1. We define the following relaxed correctness and privacy properties of f̂ :

• (Statistical) δ-correctness. There exists a probabilistic function Dec such that
for every x ∈ X , Pr[Dec(f̂(x, r)) 6= f(x)] ≤ δ, where the probability is taken
over a uniform choice of r from R and the randomness of Dec.

• (Statistical) ε-privacy. There exists a randomized function Sim such that for ev-
ery x ∈ X ,

SD(Sim(f(x)), f̂(x, r)) ≤ ε,

where r is chosen uniformly from R and where SD denotes statistical distance.
• (Computational) (ε, t)-privacy. Suppose that Ŷ = {0, 1}m. Then f̂ is said to

be (ε, t)-private (with respect to f ) if there exists a randomized function Sim
outputting strings from {0, 1}m, such that for every x ∈ X and boolean circuit
D of size t, ∣∣∣Pr[D(Sim(f(x))) = 1]− Pr[D(f̂(x, r)) = 1]

∣∣∣ ≤ ε.
When considering an efficient compiler which produces imperfect encoder, decoder,

and simulator, the compiler may take a security parameter k as an additional input. In
this case, the typical requirement is that the compiler run in time polynomial in k and
provide the guarantees that δ, ε are negligible in k (in the statistical case) and additionally
t is super-polynomial in k (in the computational case).

It is often convenient to manipulate randomized encodings by concatenating encod-
ings of two or more functions and by composing encodings, namely applying one encod-
ing on top of another. For simplicity we restrict the attention here to the perfect case. We
refer the reader to [AIK06b,AIK11] for the general case.

Lemma 3.3 (Concatenation) Suppose f̂i(x, ri) is a randomized encoding of fi(x) for
i = 1, . . . , k. Then the function f̂(x, (r1, . . . , rk))

def
= (f̂1(x, r1), . . . , f̂k(x, rk)) is a

randomized encoding of f(x)
def
= (f1(x), . . . , fk(x)).

Lemma 3.4 (Composition) Suppose f̂(x, r) is a randomized encoding of f(x) and
f̂ ′((x, r), r′) is a randomized encoding of f̂(x, r) (viewing the latter as a determinis-
tic function of (x, r)). Then f̂ ′′(x, (r, r′))

def
= f̂ ′((x, r), r′) is a randomized encoding of

f(x).

4. Constructions of Randomized Encodings

In this section we describe different constructions of randomized encodings, grouped
according to the notions of simplicity they satisfy.

4.1. Decomposable Encodings

We start by defining a generalization of the notion of decomposable encodings described
in Section 2. This definition coincides with the “simultaneous messages” model of secure
computation put forward by Feige, Kilian, and Naor [FKN94].



Definition 4.1 (Decomposable randomized encoding) For f : X1 × · · · ×Xn → Y , a
decomposable randomized encoding of f is one that has the form

f̂((x1, . . . , xn), r) = (f̂1(x1, r), . . . , f̂n(xn, r))

for some functions f̂i : Xi ×R→ Ŷi.

In the rest of this section we present three different constructions. Each of these con-
structions leads to the conclusion that every finite function f : X1 × · · · ×Xn → Y ad-
mits a decomposable encoding. However, the constructions have very different efficiency
features. The first construction, based on [FKN94], relies on a truth-table representation
and will therefore typically be inefficient. The second construction, based on [AIK11],
is a modular variant of Yao’s garbled circuit construction which relies a representation
of f by a circuit or formula. (A formula is a circuit with fan-out 1.) Requiring perfect
correctness and privacy, the complexity of this construction is exponential in the circuit
depth or polynomial in the formula size. This applies both to boolean and arithmetic
circuits. Settling for computational privacy and assuming the existence of a pseudoran-
dom generator, the complexity of the construction can be made linear in the circuit size.
The third construction, based on [Kil88], relies on a representation of f using an iter-
ated group product. Combined with a result of Barrington [Bar86], it yields an encoding
whose complexity is polynomial in the formula size.

4.1.1. Decomposable encodings from truth-tables

In this section we give a modular presentation of a construction from [FKN94], whose
complexity is roughly linear in the truth-table size of f (more precisely, in the number of
nonzero truth-table entries). The first building block, which is of independent interest, is
a simple decomposable encoding for summation in finite abelian groups.

Claim 4.2 (Decomposable encoding for group summation) Let G be a finite abelian
group and let fsum : Gn → G be the group summation function fsum(x1, . . . , xn) =∑n
i=1 xi. Let R = {(r1, . . . , rn) ∈ Gn :

∑n
i=1 ri = 0}. Then the function f̂sum :

Gn × R → Gn defined by f̂sum((x1, . . . , xn), (r1, . . . , rn)) = (x1 + r1, . . . , xn + rn)
is a decomposable encoding of fsum.

Proof: It is easy to verify that f̂sum maps an input x = (x1, . . . , xn) to a uniformly
random input x′ ∈ Gn such that fsum(x′) = fsum(x). Thus, we can let Dec = fsum and
let Sim(y) output a random n-tuple in f−1sum(y).

Next, we use the above example to encode a boolean function fszt which in-
stead of outputting the sum of the n inputs only determines whether the sum is zero.
Here it is convenient to work over a finite field F. The idea is to first encode fszt by
f̂((x1, . . . , xn), r)

def
= r · (x1 + . . . + xn), where r is a random nonzero field element

(i.e., R = F \ {0}), and then apply the encoding from Claim 4.2 (via Lemma 3.4) to
decompose f̂ . Concretely, the second step encodes r · (x1 + . . .+xn) = rx1 + · · ·+rxn
by (rx1 + r1, . . . , rxn + rn) where (r1, . . . , rn) are random field elements that sum up
to 0. This construction is captured by the following claim.



Claim 4.3 (Decomposable encoding for summation zero-test) Let F be a finite field
and let fszt : Fn → {Yes,No} be the summation zero-test function defined by:

fszt(x1, . . . , xn) =

{
Yes,

∑n
i=1 xi = 0,

No, otherwise.

Let Rszt = {(r0, r1, . . . , rn) ∈ Fn+1 : r0 ∈ F \ {0},
∑n
i=1 ri = 0}. Then the

function f̂szt : Fn × Rszt → Fn defined by f̂szt((x1, . . . , xn), (r0, r1, . . . , rn)) =
(r0x1 + r1, . . . , r0xn + rn) is a decomposable encoding of fszt.

Proof: As noted above, f̂szt can be derived by applying the Composition Lemma
(Lemma 3.4) to Claim 4.2 and a simple non-decomposable encoding of fszt. To analyze
the construction directly, note that f̂szt maps any fixed input x ∈ Fn to a uniformly
random input x′ ∈ Fn such that fszt(x′) = fszt(x). Thus the decoder can be defined
by Dec(ŷ1, . . . , ŷn) = fszt(ŷ1, . . . , ŷn) and the simulator, on input y ∈ {Yes,No}, can
output a random n-tuple from f−1szt (y).

Given Claim 4.3, we can easily obtain a decomposable encoding any indicator func-
tion which tests whether the inputs take specific values.

Definition 4.4 (Indicator function) For a ∈ X , the indicator function Ia : X →
{Yes,No} outputs Yes if the input is equal to a and outputs No otherwise. We will iden-
tify Yes with the value 0 and No with the value 1.

Claim 4.5 (Decomposable encoding for indicator functions) Let X = X1× · · ·×Xn

and a = (a1, . . . , an) ∈ X . Let p be a prime such that p > n, and let Rszt and f̂szt be as
in Claim 4.3 over a field F of size p. Then the function Îa : X ×Rszt → Fn defined by

Îa((x1, . . . , xn), r) = f̂szt((Ia1(x1), . . . , Ian(xn)), r)

is a decomposable encoding of Ia.

Proof: Since p > n, we have
∑n
i=1 Iai(xi) ≡ 0 mod p if and only if Iai(xi) = 0,

namely xi = ai, for all i. Thus, fszt(Ia1(x1), . . . , Ian(xn)) = Ia(x1, . . . , xn). It follows
that f̂szt((Ia1(x1), . . . , Ian(xn)), r) encodes Ia.

As special cases, this gives very efficient decomposable encodings for the boolean
AND and OR functions. If one is willing to increase the encoding size by a factor equal
to the truth-table size (or, more precisely, the number of nonzero entries), it is possible
to extend this solution to one that applies to every function f : X1× · · ·×Xn → {0, 1}.
The encoding of f is obtained by concatenating encodings of all indicator functions Ia
for a such that f(a) = 1. In case f(x) = 1, we need to hide the identity of the indicator
function which is satisfied. This is done by randomly permuting the encodings Îa.

Construction 4.6 (Decomposable encoding for binary truth-tables) Let X = X1 ×
· · · × Xn, let f : X → {0, 1}, and let A = {a ∈ X : f(a) = 1}. Let P be a set of
permutations over A with the property that for any a ∈ A, a uniformly chosen π ∈ P
makes π(a) uniformly distributed over A (e.g., P can be the set of all “cyclic shifts” of
A with respect to some linear order). Let R = P × R|A|szt where Rszt is as in Claim 4.3.
For r = (π, (ra)a∈A) ∈ R, define the encoding:



f̂(x, r) =
(
Îπ(a)(x, ra)

)
a∈A

.

Claim 4.7 For any f : X1 × · · · × Xn → {0, 1}, the function f̂ defined in Construc-
tion 4.6 is a decomposable randomized encoding of f .

Proof: First, observe that f is encoded by the function g(x, π) =
(
Iπ(a)(x)

)
a∈A,

where π is drawn uniformly at random from Π. Indeed, if f(x) = 0 then the output of
g consists only of ‘No’ symbols, whereas if f(x) = 1 then the output contains a single
‘Yes’ symbol in a random position. The encoding f̂ is obtained from g and the encodings
Îa by using Lemma 3.3 and Lemma 3.4.

Using a binary representation of the output, any function f : X → Y can be viewed
as a concatenation of functions fi : X × {0, 1}. Thus, by combining Claim 4.7 and
Lemma 3.4 we get the following theorem.

Theorem 4.8 Every finite function f : X1 × · · · × Xn → Y admits a decomposable
randomized encoding.

4.1.2. Decomposable encodings from circuits

In this section we describe a composition-based approach for decomposable encod-
ing, which can be viewed as an abstraction of Yao’s garbled circuit construction.
This approach was used in [AIK11] to encode arithmetic circuits. We refer the reader
to [IK02,LP09,AIK06a,BHR12b] for a description and analysis of more traditional fla-
vors of the garbled circuit construction.

The high level idea of the composition-based approach is as follows. Suppose that
we can transform a decomposable encoding of f(x) to a decomposable encoding of
f ′(x′) = f(g(x′)), for any “simple” function g, with only a small overhead. Then we can
repeat this step for each layer gi of a circuit, going from the top to the bottom, eventually
obtaining an encoding for the function computed by the entire circuit.

To carry out the above approach, it suffices to rely in a black-box way on the ex-
istence of a decomposable encoding for every finite function, which was already estab-
lished in the previous section. However, we prefer a self-contained derivation which will
also be useful towards obtaining low-degree encodings. It will be convenient to rely on
the following algebraic variant of decomposable encodings.

Definition 4.9 (Decomposable affine randomized encoding (DARE)) Let F be a finite
ring and let f : Fn → Fl. A decomposable affine randomized encoding (DARE) of f is
an encoding f̂ : Fn × Fm → Fs of f that has the form

f̂((x1, . . . , xn), r) = (f̂0(r), f̂1(x1, r), . . . , f̂n(xn, r))

for some functions f̂0 : Fm → Fs0 and f̂i : F × Fm → Fsi such that f̂i has degree
1 in xi. That is, f̂i(xi, r) can be written as ai(r) · xi + bi(r) for arbitrary functions
ai, bi : Fm → Fsi .

Note that a DARE over the binary field coincides with the previous notion of decom-
posable randomized encoding; however, over larger rings this notion is strictly stronger.



An arithmetic circuit over a ring F is defined similarly to a standard boolean circuit,
except that the inputs xi can take arbitrary values from F and each gate can add or
multiply over F the values of its two inputs. (An input gate can contain either an input
variable xi or a constant value; this makes it possible to implement a−b by a+(−1) ·b.)
Note that arithmetic circuits generalize the standard model of boolean circuits in the
sense that any boolean circuit can be simulated by an arithmetic circuit over the binary
field with a small overhead.

We will use the composition-based approach to construct a DARE for every arith-
metic circuit over F, where the encoding size is exponential in the circuit depth. Since
any arithmetic formula can be simulated by a circuit whose depth is logarithmic in the
formula size [Bre74], this yields polynomial-size encodings for arithmetic formulas.

The construction we present next relies on a concrete DARE referred to as the
affinization gadget. Here and in the following, we will make free use of concatenation
and composition of randomized encodings (Lemmas 3.3 and 3.4).

Claim 4.10 (Affinization gadget) Let F be a finite ring and let fAG : F3 → F be
the function defined by fAG(x1, x2, x3) = x1x2 + x3. Then fAG is encoded by the
DARE f̂AG : F3 × F4 → F5 defined by f̂AG((x1, x2, x3), (r1, r2, r3, r4)) = (a1x1 +
b1, a2x2 + b2, a3x3 + b3), where a1 = (1, r2), b1 = (−r1,−r1r2 + r3), a2 = (1, r1),
b2 = (−r2, r4), a3 = 1, and b3 = −r3 − r4.

Proof: First note that the function fsum(x, x′) = x+x′ is encoded by f̂sum((x, x′), r) =
(x + r, x′ − r). (This is a special case of Claim 4.2.) To prove the correctness and pri-
vacy of f̂AG, we use the following intermediate encoding of fAG (which is affine but not
decomposable):

f̂ ′AG(x1, x2, x3 ; r1, r2) = (x1 − r1 , x2 − r2 , r2x1 − r1r2 + r1x2 + x3).

It is not hard to see that f̂ ′AG encodes fAG: the decoder and simulator can be defined
by Dec(ŷ1, ŷ2, ŷ3) = ŷ1ŷ2 + ŷ3 and Sim(y; s1, s2) = (s1, s2, y − s1s2). Their validity
follows from the fact that the first two outputs ŷ1, ŷ2 of f̂ ′AG are uniformly random and
independent, and the third output is ŷ3 = fAG(x1, x2, x3)− ŷ1ŷ2. The encoding f̂AG is
obtained from f̂ ′AG by applying the encoding f̂sum (twice, using the additional random-
ness r3, r4) to break the terms in the last entry of f̂ ′AG and then arranging the outputs in
the canonical format of Definition 4.9.

We now use the affinization gadget for implementing the basic composition step.

Lemma 4.11 (Composition step) Let F be a finite ring and let f : Fn → Fl. Let g :
Fn′ → Fn be a depth-1 arithmetic circuit, i.e., each output of g is either the sum or the
product of two inputs. Suppose f admits a DARE f̂ with parameters s0, . . . , sn as in
Definition 4.9. Then, the function f ′ : Fn′ → Fl defined by f ′(x′) = f(g(x′)) admits a
DARE f̂ ′ with parameters s′0, . . . , s

′
n such that s′0 = s0 and

∑n′

i=1 s
′
i ≤ 5

∑n
i=1 si.

Proof: Let f̂(x, r) = (b0(r), a1(r) · x1 + b1(r), . . . , an(r) · xn + bn(r)) be the given
DARE for f . Substituting g(x′) for x, the function f̂ ′′(x′, r)

def
= f̂(g(x′), r) encodes

f ′(x′) = f(g(x′)). However, the encoding f̂ ′′ is no longer decomposable. We further
encode it to make it decomposable by applying the summation and affinization gadgets.
Concretely, for i = 1, . . . , n:



• If xi = x′j +x′k (i.e., the i-th output of g is x′j +x′k), we bring ai(r) · (x′j +x′k) +

bi(r) to a DARE format using the summation gadget f̂sum. That is, we encode
this expression by (ai(r) · x′j + r′, ai(r) · x′k + (bi(r) − r′)) where r′ is a fresh
vector of random inputs of length si. The total output length of this DARE is 2si.

• If xi = x′j ·x′k, we bring ai(r) ·(x′j ·x′k)+bi(r) to a DARE format by first parsing
it as (ai(r) · x′j) · x′k + bi(r) and then applying the affinization gadget to each of
the si entries of the output. The total output length of the resulting DARE is 5si.

Overall, we left b0(r) unchanged (hence s′0 = s0) and we generated at most 5 ·
∑n
i=1 si

additional outputs, which can be rearranged in the format of Definition 4.9.
By iterating the composition step, we can compile an arbitrary arithmetic circuit into

a corresponding DARE whose output length is exponential in the circuit depth.

Theorem 4.12 Let C be an arithmetic circuit of depth d over a finite ring F computing
a function f : Fn → Fl. Then f admits a DARE over F with output length l · 2O(d).

Proof: We can assume without loss of generality that C is layered, namely f(x) =
C1 ◦ C2 ◦ · · · ◦ Cd(x) where each Ci is computed by a depth-1 arithmetic circuit. (Any
circuit can be converted to this form without increasing the depth.) Let f0 : Fl → Fl be
the identity function on the outputs and fi = fi−1 ◦ Ci for i = 1, . . . , d. We obtain a
DARE f̂d for fd = f via the following iterative process:

• Let f̂0 = f0.
• For i = 1, . . . , d, obtain a DARE f̂i for fi by applying the composition step

(Lemma 4.11) with f = fi−1, f̂ = f̂i−1, and g = Ci.

In each step, the output length of the encoding grows by at most a constant factor.
Letting F be the binary field, Theorem 4.12 yields a polynomial-size decomposable

encoding for functions f in the complexity class NC1 (equivalently, functions f with
polynomial-size formulas). More efficient constructions for the binary and arithmetic
case are given in [Kol05] and [CFIK03], respectively.

Relaxing privacy. We now explain how the exponential blowup in the depth can be
avoided by settling for computational privacy. We focus here on the binary case; an ex-
tension to arithmetic circuits over the integers is given in [AIK11]. Consider the encod-
ing f̂ ′ obtained via composition step of Lemma 4.11. In the binary case, the parameter
s′i captures the input locality of the bit x′i in f̂ ′. The effect of x′i on the output of f̂ ′ is
equivalent to a selection between two binary strings (z0, z1) of length s′i each, where
each zi depends only on the randomness of f̂ ′ and not on the input x′. The key observa-
tion is that when the input locality s′i grows beyond a computational security parameter
k, we can use symmetric encryption to reduce it back to k at the expense of slightly in-
creasing the length s′0 of ŷ′0. (The latter corresponds to the “garbled circuit” part in Yao’s
construction.) Since ŷ′0 is not further encoded, this eliminates the exponential blowup.

Concretely, we would like to encode the selection function fsel(b, z0, z1) = zb,
where b ∈ {0, 1} and z0, z1 ∈ {0, 1}K , by a function f̂sel((b, z0, z1), r) for which at
most k bits of the output depend on b. A simple way to implement f̂sel using sym-
metric encryption is to encrypt z0 and z1 under k-bit random keys κ0 and κ1, respec-
tively, and output the pair of ciphertexts in a random order along with the key κb. In
order to allow the correct decoding of zb, the encryption scheme should be verifiable



(i.e., decryption with incorrect key can be identified), which typically leads to a statisti-
cally small decoding error (as in the garbled circuit variant used in [LP09]). A perfectly
correct version which can rely on an arbitrary symmetric encryption scheme (alterna-
tively, a pseudorandom generator) can be obtained by appending to the encoding the
value π ⊕ b, where π is the random bit which determines whether the two ciphertexts
are swapped. This bit points to the ciphertext which the decoder should decrypt without
revealing information about b. (This version corresponds to the garbled circuit variant
used in [BMR90,NPS99,AIK06a].)

With the above mechanism for containing the input locality in place, the composition
step increases the length of the encoding by at most an additive term of O(k(n + n′)).
The overall encoding length in the iterative construction becomesO(k · |C|) where |C| is
the number of gates in C and k is a security parameter (size of an encryption key which
suffices for the desired level of computational privacy).

4.1.3. Decomposable encodings from group products

We now present a third approach for constructing decomposable encodings, relying on
the computational power of non-abelian groups. We start with a simple construction
of decomposable encodings for an iterated group product due to Kilian [Kil88]. This
construction naturally extends the construction for abelian groups given in Claim 4.2.

Claim 4.13 (Decomposable encoding for group product) Let G be a finite group and
let fprod : Gn → G be the group product function fprod(x1, . . . , xn) =

∏n
i=1 xi. Then

the function f̂prod : Gn ×Gn−1 → Gn defined by

f̂prod((x1, . . . , xn), r) = (x1r1, r
−1
1 x2r2, r

−1
2 x3r3, . . . , rn−2xn−1rn−1, r

−1
n−1xn)

is a decomposable encoding of fprod.

Proof: As in Claim 4.2, it suffices to argue that for any x ∈ Gn, the output ŷ of
f̂prod(x, r) is uniformly distributed over the set of x′ ∈ Gn such that fprod(x′) =
fprod(x). It is easy to verify that fprod(ŷ) = fprod(x) for every choice of r. Also note
that each entry of ŷ except the last involves a new random input ri which does not appear
in previous entries. This ensures that the first n− 1 entries of ŷ are uniformly distributed
over Gn−1. Since the last entry of ŷ is determined so that fprod(ŷ) = fprod(x), the
distribution of ŷ must indeed be uniform subject to fprod(ŷ) = fprod(x).

A celebrated theorem of Barrington [Bar86] shows that evaluating a boolean circuit
of depth d reduces to computing an iterated product of m = 2O(d) elements g1, . . . , gm
from the symmetric group S5, where each gi is determined by a single bit of the input.
Moreover, the output of the group product is in one-to-one correspondence to the output
of the circuit (that is, there are two fixed group elements that correspond to the two
possible outputs). Thus, applying Claim 4.13 to decompose this iterated group product,
we get a very different alternative proof for Theorem 4.12 in the binary case.

The results of [Cle90,BC92] give more efficient variants of Barrington’s theorem
and extend it to arithmetic circuits. In particular, it is shown that for any ε > 0 there is a
finite group Gε (whose size grows as ε tends to 0) such that by using an iterated product
over Gε the parameter m can be as small as 2(1+ε)d. These results can be combined with
Claim 4.13 to give corresponding improvements in the complexity of the encoding. Ex-



tensions of the iterated group product approach to efficiently encoding non-deterministic
branching programs appear in [FKN94]. More efficient constructions which apply to a
wider class of branching programs are given in [IK97,CFIK03].

4.2. Low-Degree Encodings

In this section we describe several general approaches for encoding functions by low-
degree polynomials. Throughout this section we will consider polynomials over a finite
field F, where we will mainly be interested in the case of the binary field. However, it
will sometimes be useful to work over a field F which is bigger than the input domain.
For instance, we may want to encode a function f : {0, 1}n → {0, 1} by a low-degree
encoding over a non-binary field F. This is captured by the following definition.

Definition 4.14 (Degree-d encoding) Let F be a finite field, let H ⊆ F, and let f :
Hn → Y . We say that f̂ : Fn × Fm → Fs is a degree-d encoding of f if there exist
polynomials p1, . . . , ps ∈ F[x1, . . . , xn, r1, . . . , rm], each of total degree at most d, such
that

• f̂(x, r) = (p1(x, r), . . . , ps(x, r)) for all x ∈ Fn and r ∈ Fm, and
• f̂(x, r), restricted to inputs x in Hn, is a randomized encoding of f according to

Definition 3.1.

When H is a strict subset of F, the encoding provides no correctness or privacy
guarantees for x 6∈ Hn. In this case, some applications of low-degree encodings (such as
secure computation in the presence of active corruptions) need to ensure that the inputs
are indeed taken from H .

We start with a simple example, showing the existence of a degree-2, statistically
correct encoding of the boolean OR function over any field F. This encoding was im-
plicitly used for low-degree approximations of constant-depth circuits in the works of
Smolensky and Razborov [Smo87,Raz89].

Example 4.15 (Degree-2 encoding for disjunction) Let fOR : {0, 1}n → {0, 1} be
the disjunction function fOR(x1, . . . , xn) = x1 ∨ x2 ∨ . . . ∨ xn. For a finite field F,
define f̂OR : Fn × Fn → F by f̂OR(x, r) =

∑n
i=1 rixi. Then, f̂OR is a perfectly

private, (1/|F|)-correct degree-2 encoding of f̂OR. Indeed, if f(x) = 0 then the output
ŷ = f̂OR(x, r) is identically 0, and if f(x) = 1 then ŷ is uniformly distributed over F.
Thus, a decoder Dec which outputs 0 if ŷ = 0 and outputs 1 otherwise errs with at most
1/|F| probability. We note that concatenating s independent outputs of f̂OR (using ns
random field elements) yields a perfectly private, |F|−s-correct degree-2 encoding for
fOR.

A corollary of this example is that fOR can be computed by a 2-round protocol with
security against t < n/2 active corruptions. It is open whether such protocols exist for
general functions.

Example 4.15 can be generalized to a degree-2 encoding of any function which tests
the membership of x in some affine subspace of Fn. Other functions which (trivially)
admit a degree-2 encoding are those that have degree 2 over F. It turns out that no other
functions f : {0, 1}n → {0, 1} admit degree-2 encodings with perfect privacy even if



any correctness error δ < 1/2 is allowed [IK00]. It is open whether the same holds for
statistically private encodings, even when perfect correctness is required.

In the following we give several constructions of degree-3 encodings for arbitrary
functions f .

4.2.1. Slightly correct degree-3 encodings

We first show that by relaxing the correctness requirement to allow an arbitrary nontrivial
correctness error δ < 1/2 (but still insisting on perfect privacy), we can get very efficient
degree-3 encodings whose complexity is linear in the circuit size.

The idea is to use a standard reduction from the evaluation of a circuit C on input
x to the satisfiability of a system of quadratic equations qi(x, y) = 0 in the inputs x and
additional auxiliary inputs y corresponding to gates of the circuit. The system should
have the property that ifC(x) 6= 0 then there is no y such that (x, y) satisfy all equations,
and if C(x) = 0 then there is exactly one such y. The degree-3 encoding of C guesses
a solution y at random and “verifies” it by taking a random linear combination of all
qi(x, y), as in Example 4.15. We formulate below an arithmetic version that works over
any finite field F. An encoding for standard boolean circuits can be obtained by taking F
to be the binary field.

Construction 4.16 (Slightly correct degree-3 encoding from circuits) Let C : Fn →
F be an arithmetic circuit of size s over a finite field F. Let fC : Fn → {0, 1} be the
function defined by

fC(x) =

{
0, C(x) = 0,

1, C(x) 6= 0.

Denote the gates of C by y1, . . . , ys, where y1, . . . , yn are the inputs and ys is the output
gate. Define degree-2 polynomials qi(x1, . . . , xn, y1, . . . , ys), 0 ≤ i ≤ s, as follows:

• q0 = ys,
• For i = 1, . . . , n, qi = yi − xi,
• For every addition gate yj with inputs ya, yb, let qj = yj − (ya + yb),
• For every multiplication gate yj with inputs ya, yb, let qj = yj − yayb.

Define the randomized encoding f̂C : Fn × F2s+1 → F by

f̂C(x, (y1, . . . , ys, r0, . . . , rs)) =

s∑
i=0

riqi(x1, . . . , xn, y1, . . . , ys).

Claim 4.17 The function f̂C from Construction 4.16 is a perfectly private, δ-correct
degree-3 encoding of fC for some δ < 1/2.

Proof: Note that for any input x, if C(x) = 0 then there is exactly one y which
satisfies all equations qi(x, y) = 0, namely y which contains the outputs of all gates in
the evaluation of C on x. If C(x) 6= 0, on the other hand, then no such y exists. We can
now analyze the output distributions in both cases. If C(x) 6= 0 then conditioned on any
choice of y, the linear combination

∑
riqi will be uniformly random over F (since at



least one qi takes a nonzero value). Thus, in this case the output of f̂C is uniform over F.
On the other hand, if C(x) = 0 then there is a single choice of y conditioned on which
the output of f̂C will be identically zero, and conditioned on all other choices of y the
output will random as before. Thus, in this case the output will be slightly biased towards
0 (where the distribution will be the same for all x such that C(x) = 0). Perfect privacy
follows from the fact that the output distribution of f̂C(x, r) depends only on fC(x). The
ability to (probabilistically) decode with a nontrivial correctness error δ < 1/2 follows
from the fact that the two output distributions are distinct.

As in Example 4.15, one could amplify the correctness of this construction via rep-
etition. However, using this approach to get a small error δ, say δ < 1/3, will make the
output size of the encoding exponential in the circuit size.

4.2.2. Degree-3 encodings over huge fields

The previous construction worked over any field, but required exponentially many out-
puts to achieve a small correctness error. Here we show the existence of a degree-3 en-
coding with a single output and a small correctness error for any function f : {0, 1}n →
{0, 1}. The price is that the field size will generally be doubly exponential in n. The
idea (adapted from [FKN94]) is to find a large enough prime p such that the sequence
of quadratic characters modulo p contains the truth table of f as a subsequence. The
encoding f̂ is computed by first mapping the bits of x to the corresponding residue ax,
and then encoding the quadratic character of ax by multiplying it with the square of a
random field element.

For a prime p and 0 ≤ a < p we let QRp(a) denote the quadratic character of a
modulo p, namelyQRp(a) = a(p−1)/2 mod p. Note thatQRp(a) ∈ {−1, 1} for a 6= 0.
We rely on the following fact from number theory.

Fact 4.18 (cf. [Per92]) For any sequence (t0, t1, . . . , tN−1) ∈ {−1, 1}N there exists a
prime p ∈ 2O(N) and 0 < a0 ≤ p−N such thatQRp(a0 + i) = ti for i = 0, . . . , N−1.

Construction 4.19 (Degree-3 encoding over huge fields) For f : {0, 1}n → {0, 1}
and x ∈ {0, 1}n, define i(x) =

∑n
j=1 2j−1xj and ti(x) = (−1)f(x). Let p, a0 be as

promised by Fact 4.18 for the sequence (t0, . . . , t2n−1). Define the randomized encoding
f̂ : Fnp × Fp → Fp by

f̂(x, r) = r2 ·

a0 +

n∑
j=1

2j−1xj


Claim 4.20 The function f̂ from Construction 4.19 is a perfectly private, (1/p)-correct
degree-3 encoding of f over Fp.

Proof: The output ŷ = f̂(x, r) is distributed as r2a for some a = a(x) such that
QRp(a) = (−1)f(x). Thus, ŷ = 0 with probability 1/p, and otherwise it is uniformly
distributed over the (p − 1)/2 elements a′ ∈ Fp such that QRp(a′) = QRp(a). Since
this distribution is determined by f(x), we get perfect privacy. The decoder can output
0 if QRp(ŷ) = 1 and output 1 if QRp(ŷ) ∈ {−1, 0}. This decoder can err only when
ŷ = 0.



4.2.3. Degree-3 encodings from circuits

The previous constructions we described are not perfectly correct and are not efficient in
the input length even for simple functions. Using suitable variants of Yao’s garbled cir-
cuit construction [IK02,AIK06a], it is possible to avoid these limitations and efficiently
transform any boolean formula (resp., boolean circuit) into a perfectly private and correct
(resp., computationally private and perfectly correct) degree-3 encoding over the binary
field.

Below we describe a modification of the composition-based construction from Sec-
tion 4.1.2 which yields perfectly correct degree-3 encodings over an arbitrary field F
with similar efficiency features. Recall that the affinization gadget from Claim 4.10 is
an encoding f̂AG of the function fAG(x1, x2, x3) = x1x2 + x3 which has degree 1 in
the inputs xi and total degree 2 in xi, rj . (In fact, for our purposes here we can use the
simpler form f̂ ′AG of this gadget appearing in the proof of Claim 4.10.)

The composition step of Lemma 4.11 uses this gadget to encode an entry of the form
t = a(r)(x′ix

′
j) + b(r). (We consider here the case of multiplication; the case of addition

is simpler.) This is done by parsing it as (a(r)x′i) · x′j + b(r) and using the affinization
gadget with x1 = a(r)x′i, x2 = x′j and x3 = b(r). The resulting encoding now has
entries of the form t′ = rh · a(r)x′j + c(r), where c(r) has degree 2 in the randomness.
The entry t′ has degree 1 in the x′ variables (this is sufficient for maintaining the DARE
property) but its degree in the random inputs ri may be bigger by 1 compared to t.
The next substitution step replaces x′j by a product of new inputs and repeats the above
process, which further increases the degree in the randomness.

To eliminate this growth of degree, it suffices to apply the affinization gadget again to
t′ before the composition step. That is, t′ is parsed as (rha(r))·x′j+c(r) and then encoded
via the affinization gadget. This modification can be used to maintain the invariant that
the degree in the x variables is 1 and the total degree in both x and r is at most 3.

The above approach yields a polynomial-size degree-3 encodings for functions in
(boolean and arithmetic) NC1. Settling for computational privacy and assuming the
existence of a pseudorandom generator in NC1 (equivalently, a one-way function in
NC1 [HILL99,HRV10]), this can be extended to all polynomial-time computable func-
tions. The idea is to first construct an NC1 encoding of f with oracle access to the PRG
(this can be done directly via Yao’s construction or via the approach of Section 4.1.2).
Substituting the NC1 PRG implementation, we get an encoding for f in NC1, which can
then be encoded again into a degree-3 encoding. We refer the reader to [AIK06a] for
more details.

4.2.4. Degree-3 encodings from branching programs

In this section we describe a perfect degree-3 encoding from [IK02] whose complexity is
quadratic in the size of a branching program computing f . This construction efficiently
applies to complexity classes such as ⊕L/poly (a mod-2 variant of non-deterministic
logspace) which are believed to strictly contain NC1.

The high level idea of the encoding we describe next is to reduce the evaluation
of a branching program to computing the determinant of a matrix M whose entries are
degree-1 polynomials in the inputs. Relying on the special form that M has, we can en-
code its determinant via a matrix productR1MR2 whereR1 andR2 are random matrices
whose entries contain either random inputs or constants.



We start by defining the notion of (arithmetic) branching programs to which the
encoding applies.

Definition 4.21 (Branching program over F) A branching program (BP) over F is de-
fined by a quadruple BP = (G,φ, s, t), where G = (V,E) is a directed acyclic graph, φ
is an edge labeling function assigning each edge a degree-1 polynomial in a single input
variable xi, and s, t are two special vertices. The size of BP is the number of vertices
in G. Each input assignment x = (x1, . . . , xn) ∈ Fn induces an assignment Gx of a
value from F to each e ∈ E. The output BP(x) is defined as the sum of the weights of all
directed paths from s to t in Gx, where the weight of a path is the product of the values
of its edges.

Branching programs are quite powerful. In particular, any boolean formula (resp.,
arithmetic formula over F) has a BP over F2 (resp., over F) of the same size, whereas
it is conjectured that BPs cannot be efficiently simulated by formulas. However, as
polynomial-size BPs capture different variants of log-space computation, it seems un-
likely that all polynomial-time computable functions admit polynomial-size BPs.

The construction. The following description is taken almost verbatim from [IK02,
AIK06b]. Let BP = (G,φ, s, t) be a BP of size ` over F, computing a function
f : Fn → F. Fix some topological ordering of the vertices of G, where the source vertex
s is labeled 1 and the terminal vertex t is labeled `. For any input x, let Ax be the ` × `
matrix over F whose (i, j) entry contains the value assigned by φ to the edge (i, j) (or 0
if there is no such edge). Define L(x) as the submatrix of Ax − I obtained by deleting
column s and row t (i.e., the first column and the last row). Note that each entry of L(x)
has degree (at most) 1 in the inputs x; moreover, L(x) contains the constant −1 in each
entry of its second diagonal (the one below the main diagonal) and the constant 0 below
this diagonal.

Fact 4.22 ([IK02]) f(x) = det(L(x)).

Let r(1) and r(2) be vectors over F of length
(
`−1
2

)
and ` − 2 respectively. Let

R1(r(1)) be an (`− 1)× (`− 1) matrix with 1’s on the main diagonal, 0’s below it, and
the elements of r(1) in the remaining

(
`−1
2

)
entries above the diagonal (a unique element

of r(1) is assigned to each matrix entry). Let R2(r(2)) be an (` − 1) × (` − 1) matrix
with 1’s on the main diagonal, r(2)’s elements in the rightmost column, and 0’s in the
remaining entries.

Fact 4.23 ([IK02]) Let M,M ′ be (` − 1) × (` − 1) matrices that contain the con-
stant −1 in each entry of their second diagonal and the constant 0 below this di-
agonal. Then, det(M) = det(M ′) if and only if there exist r(1) and r(2) such that
R1(r(1))MR2(r(2)) = M ′.

Claim 4.24 Let BP and f be as above. Define a degree-3 function f̂(x, (r(1), r(2)))
whose outputs contain the

(
`
2

)
entries on or above the main diagonal of the matrix

R1(r(1))L(x)R2(r(2)). Then, f̂ is a degree-3 encoding of f .

Proof: We start by describing the simulator and the decoder and then prove their
correctness. Given an output ŷ of f̂ , representing a matrix M , the decoder Dec simply



outputs det(M). The simulator Sim, on input y ∈ F, outputs the w =
(
`
2

)
entries on

and above the main diagonal of the matrix R1(r(1))HyR2(r(2)), where r(1), r(2) are
randomly chosen, andHy is the (`−1)×(`−1) matrix that contains (−1)’s in its second
diagonal, y in its top-right entry, and 0’s elsewhere.

By Facts 4.22 and 4.23, for every x ∈ Fn the support sets of f̂(x, r) and Sim(f(x))
are equal. Specifically, these support sets include all vectors in Fw representing matrices
with determinant f(x). Since the support sets of Sim(y) for distinct y ∈ F form a disjoint
partition of the entire output space Fw (by Fact 4.23) and since Sim uses m = w − 1
random field elements, it follows that the support size of Sim(y) is |F|m, for each y ∈ F.
Since both the simulator and the encoding use m random field elements, it follows that
both of the distributions f̂(x, r) and Sim(f(x)) are uniform over their support and are
therefore identical.

This yields the following theorem.

Theorem 4.25 Let BP be a branching program of size ` over a finite field F computing
the function f : Fn → F. Then f admits a degree-3 encoding over F with output length
O(`2).

We note that Theorem 4.25 in fact holds over general finite rings [CFIK03]. More-
over, the degree-3 encoding has degree 1 in the inputs x and can be made decomposable
via the transformation described in the next section.

4.3. Local Encodings

In this section we discuss the existence of randomized encodings with small output lo-
cality and their relations with previous notions of simplicity. We will focus here on the
case of functions f : {0, 1}n → {0, 1}l over the binary alphabet. Recall that an encoding
f̂(x, r) of f has output locality d (or locality d for short) if each output bit of f̂ depends
on at most d bits of its input (x, r).

Note that if f̂ has locality d then it also has degree (at most) d over the binary field
F2. We show the following converse: if f̂ has degree d over F2, then it can be efficiently
converted into an encoding f̂ ′ of f with locality d + 1 (and degree d). In particular, the
degree-3 encodings from the previous section can be efficiently converted into encodings
with locality 4.

Reducing the locality. The idea for reducing the locality is to represent a degree-d poly-
nomial over F2 as a sum of monomials, each having locality d, and randomize this sum
by composing it with a variant of the decomposable encoding for group products from
Claim 4.13. (A direct use of Claim 4.13 over the binary group gives a (d + 2)-local
encoding instead of the (d+ 1)-local encoding we obtain here.)

Construction 4.26 (Locality construction) Let f(x) = T1(x) + . . . + Tk(x), where
summation is over an abelian group. The local encoding f̂ is defined by:
f̂(x, (r1, . . . , rk, r

′
1, . . . , r

′
k−1))

def
= (T1(x)−r1, T2(x)−r2, . . . , Tk(x)−rk, r1−r′1, r′1+

r2 − r′2, . . . , r′k−2 + rk−1 − r′k−1, r′k−1 + rk).

For example, applying the locality construction to the polynomial x1x2 + x2x3 + x4
results in the function (x1x2 − r1, x2x3 − r2, x4 − r3, r1 − r′1, r′1 + r2 − r′2, r′2 + r3).



Lemma 4.27 (Locality lemma [AIK06b]) Let f and f̂ be as in Construction 4.26. Then,
f̂ is a randomized encoding of f . In particular, if f is a degree-d polynomial over F2

written as the sum of monomials, then f̂ is an encoding of f with degree d and locality
max(d+ 1, 3).

Note that the encoding f̂ obtained via the locality construction is also decomposable
whenever f has degree 1 in the input x. Moreover, any degree-3 encoding can be effi-
ciently converted into one that has degree 1 in x using the encodings from the previous
section. This yields the following strong transformation from low-degree encodings to
encodings that simultaneously satisfy all of our efficiency features.

Theorem 4.28 Suppose f : {0, 1}n → {0, 1}l has a degree-3 encoding f̂ : Fn2 × Fm2 →
Fs2. Then f admits a decomposable degree-3 encoding f̂ ′ : Fn2 ×Fm′

2 → Fs′2 with locality
4, where m′, s′ ∈ poly(n,m, s).

To summarize the known relations between the different notions of simplicity, any
low-degree encoding can be converted into an encoding that has constant output locality
with a polynomial overhead, and vice versa. Both can be converted into a decomposable
encoding with polynomial overhead.

5. Open Questions

We conclude by collecting some open questions about the existence and complexity of
“simple” randomized encodings. Unless noted otherwise, we will assume the underlying
alphabet or field to be binary. The existence of a “statistical encoding” refers to an ε-
correct, ε-private encoding for an arbitrarily small ε > 0. When the notion of simplicity
is unspecified, the question is open for all notions of simplicity considered in this survey.

Degree. Does every finite function (equivalently, the function x1x2x3+x4) admit a sta-
tistical degree-2 encoding? The answer is negative for perfectly private encodings [IK00].
A positive answer would imply 2-round secure k-party protocols which tolerate t < k/2
corrupted parties.

Locality. Does every finite function (equivalently, the function x1x2x3 + x4) admit
a statistical encoding with output locality 3? The question is open even with perfect
correctness and privacy. A positive answer is implied by a positive answer to the previous
question and would imply cryptography with (optimal) output locality of 3 under a broad
set of assumptions.

Complexity of statistical encodings. Does every polynomial-time computable function
admit a polynomial-time computable (or even polynomial-size) simple encoding with
perfect or statistical privacy? A positive answer would imply efficient constant-round sta-
tistically secure protocols for all polynomial-time computable functions, settling a long-
standing open question in information-theoretic cryptography [BMR90]. As an alterna-
tive to resolving this (longstanding) question, one could try to relate it to open problems
from other domains. There is also significant room for improving the asymptotic com-
plexity of statistical encodings for natural representation models such as formulas and
branching programs as well as specific functions of interest.



Complexity of computationally private encodings. Yao’s construction yields a simple
polynomial-size encoding for any polynomial-time computable function. In the case of
decomposable encoding, this can be based on the existence of any one-way function
whereas local or low-degree encodings rely on a one-way function in NC1. Can the latter
assumption be relaxed to the existence of an arbitrary one-way function? This would suf-
fice for showing that an arbitrary one-way function implies a one-way function in NC0.
Can the encoding size be made smaller than the computation time of the function being
encoded? A more modest goal is to encode any boolean circuit of size s by a decom-
posable encoding of size O(s) + poly(k) (where k is a security parameter), improving
on the O(ks) size of Yao’s construction. A final open question is to obtain efficient de-
composable encodings for arithmetic circuits over a finite field F in which both the en-
coder and the decoder make a black-box use of F. A positive result would give general
constant-round secure computation protocols in the arithmetic black-box model.
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