
Perfect Constant-Round Secure Computation via
Perfect Randomizing Polynomials

Yuval Ishai1� and Eyal Kushilevitz2��

1 Princeton University, USA. yishai@cs.princeton.edu.
2 Technion, Israel. eyalk@cs.technion.ac.il.

Abstract. Various information-theoretic constant-round secure multiparty proto-
cols are known for classes such as NC1 and polynomial-size branching programs
[1,13,18,3,19,10]. All these protocols have a small probability of failure, or alter-
natively use an expected constant number of rounds, suggesting that this might
be an inherent phenomenon. In this paper we prove that this is not the case by
presenting several constructions of perfect constant-round protocols.
Our protocols are obtained using randomizing polynomials – a recently introduced
representation [19], which naturally relaxes the standard polynomial representa-
tion of boolean functions. Randomizing polynomials represent a function f by a
low-degree mapping from its inputs and independent random inputs to a vector
of outputs, whose distribution depends only on the value of f . We obtain several
constructions of degree-optimal perfect randomizing polynomials, whose distinct
output distributions are perfectly separated. These results on randomizing poly-
nomials are of independent complexity-theoretic interest.

1 Introduction

Representation of functions by low-degree multivariate polynomials has proved to be
a surprisingly powerful tool in complexity theory. Such a representation is also useful
in the context of secure multiparty computation; in particular, most general-purpose
protocols for secure multiparty computation can be used to evaluate constant-degree
polynomials in a constant number of rounds.1 A major difficulty, however, is that not
many functions can be evaluated using low-degree polynomials, and even some very
simple functions, like the logical OR of n bits, require polynomials of degree n.

A natural relaxation of the standard representation notion which gets around this
obstacle was recently suggested in [19]. Randomizing polynomials extend the standard
representation by incorporating randomness and by allowing several polynomials to
simultaneously act on the same inputs and random inputs. Instead of directly outputting
the value of the represented function, a randomizing polynomials vector is required
to produce an output distribution which directly corresponds to this value. This is best
illustrated by the next example, which shows a degree-2 representation of the OR function
by randomizing polynomials.

� Work done while at AT&T Labs – Research and DIMACS.
�� Work done in part while at IBM T.J. Watson Research Center. Supported in part by the Mitchell-

Schoref program at the Technion and MANLAM Fund 120-044.
1 More generally, the round complexity of these protocols is proportional to the multiplicative

depth of an arithmetic circuit computing the function f of interest, where multiplicative depth
is defined similarly to ordinary circuit depth except that addition gates are ignored.

P. Widmayer et al. (Eds.): ICALP 2002, LNCS 2380, pp. 244–256, 2002.
c© Springer-Verlag Berlin Heidelberg 2002

Perfect Constant-Round Secure Computation via Perfect Randomizing Polynomials 245

Let F be some finite field, and p = (p1, . . . , ps) a vector of degree-2 polynomials
over F in the n inputs x = (x1, . . . , xn) and the sn random inputs r = (rij), 1 ≤ i ≤
s, 1 ≤ j ≤ n, defined by p(x, r) = (

∑n
j=1 xjr1j , . . . ,

∑n
j=1 xjrsj). For any input

x ∈ {0, 1}n, let P (x) denote the output distribution of p on x, i.e., the distribution over
F

s induced by a uniform choice of r from F
sn. It is not hard to verify that the above

polynomial vector p satisfies the following two properties: (1) If OR(x) = OR(y)
then the output distributions P (x) and P (y) are identical; in other words, there exist
probability distributionsD0, D1 such that for any x ∈ {0, 1}n, P (x) is equal toDOR(x)
(specifically, D0 is concentrated on the zero vector, and D1 is uniform over F

s). (2) The
statistical distance between D0, D1 is close to 1 (more precisely, it is 1 − |F|−s).

Property (1) guarantees that from a sample of P (x) it is impossible to learn anything
about x except, perhaps, OR(x); Property (2) guarantees that from such a sample it
is indeed possible to correctly compute OR(x) with high probability. Thus, learning a
sample fromP (x) is, in a sense, information-theoretically equivalent to learning OR(x).
Consequently, the task of securely computing the OR function may be reduced to the
task of securely sampling from P (x), which in turn can be reduced to that of securely
evaluating a related vector of deterministic degree-2 polynomials over F.

The application to secure computation will be more thoroughly discussed in Sec-
tion 1.1. For the time being, however, we point out the fact that the above two output
distributions D0 and D1 are not perfectly separated, and note that this does come at a
cost: even if a perfect protocol is used for the evaluation of degree-2 polynomials, the
resultant secure protocol for OR will have a nonzero error probability. This issue, which
is further motivated below, stands in the center of the current work.

A general definition of randomizing polynomials p(x, r) representing a boolean
function f(x) can be easily derived from the above example.2 In [19] it was shown
that any boolean function f can be represented by degree-3 randomizing polynomials,
where the complexity of this representation (defined as the total number of inputs and
outputs) is at most quadratic in the branching program size of f . It was also shown
that almost all functions, with the exception of functions which are “similar” to the
OR function, do not admit a degree-2 representation. However, the general degree-3
construction of [19] suffers from the same deficiency as the above example: the two
output distributions D0, D1 are not completely disjoint. Thus, the general reduction it
provides in the context of secure computation introduces a small probability of error.
This raises the question whether perfect low-degree randomizing polynomials, for which
the output distributions are perfectly separated, can be constructed, and if so at what cost.

Before describing our results we give some background on secure multiparty com-
putation and motivate the above question in this context.

1.1 Secure Multiparty Computation and Its Round Complexity

A secure multiparty computation protocol allows k parties to evaluate a function of
their inputs in a distributed way, so that both the privacy of their inputs and the cor-
rectness of the outputs are maintained. These properties should hold in the presence of
an adversary which may corrupt at most t parties. The main focus of this work is on
the information-theoretic setting for secure computation, in which security should hold

2 For concreteness, we set a constant threshold of 1/2 on the statistical distance between D0, D1;
this distance can be amplified, without increasing the degree, by concatenating several copies
of p having disjoint sets of random inputs.

246 Y. Ishai and E. Kushilevitz

against a computationally unbounded adversary. Nonetheless, our results are also useful
in the alternative computational setting, as discussed in Section 1.2.

The round complexity of interactive protocols is one of their most important complex-
ity measures. Indeed, substantial research efforts have been invested into characterizing
the round complexity of various distributed tasks, such as zero-knowledge proofs and
Byzantine Agreement. This is the case also for the general task of secure computation.
Following the initial plausibility results [26,17,6,9], much of the research in this area
has shifted to various complexity aspects of secure computation. In particular, the prob-
lem of obtaining constant-round secure protocols has attracted a considerable amount
of attention [1,5,4,13,18,24,3,7,19,10,21]. Our work continues this line of research, and
focuses on the following question: can perfectly secure computation be realized with a
constant number of rounds in the worst case?3

In the computational setting for secure computation, any function that can be (effi-
ciently) computed can also be securely computed in a constant number of rounds [26,
5,21]. The situation is not as well understood in the information-theoretic setting. Sev-
eral (efficient) constant-round protocols are known in this setting for function classes
such as NC1, polynomial-size branching programs, and related linear algebra classes [1,
13,18,3,19,10]. All these protocols have a small probability of failure, or alternatively
use an expected constant number of rounds, suggesting that this might be an inherent
phenomenon. In the current work we show that this is not the case: we obtain per-
fect constant-round protocols which typically match or beat their previous non-perfect
(information-theoretic) counterparts in every efficiency aspect.

1.2 Our Results

We present two main constructions of perfect randomizing polynomials, which in turn
can be transformed via general-purpose protocols for perfectly secure computation
(e.g., [6,11,14]) to perfect constant-round protocols. (This transformation is outlined in
Section 2.3.) The communication complexity of the resultant protocols is proportional
to the complexity of the underlying randomizing polynomials. Their exact number of
rounds depends on the specific notion of security. For instance, t-security against a pas-
sive adversary can be achieved in 2 rounds if t < k/3 or in 3 rounds if t < k/2 (see [19]),
and t-security against an active adversary can be achieved in 3 rounds with t = Ω(k)
using a 2-round VSS protocol from [14] (assuming a broadcast channel is available).
From now on, we describe the results in terms of randomizing polynomials and do not
spell out the specific consequences for constant-round secure computation.

A combinatorial construction. Our first construction of perfect randomizing polyno-
mials is combinatorial in nature, and is based on a boolean formula representation. We
first derive a natural information-theoretic analogue of Yao’s garbled circuit construc-
tion [26], which is originally cast in the computational setting, and observe that it gives
rise to a representation by perfect degree-3 randomizing polynomials over GF(2). The
complexity of this construction is at least quadratic (and always polynomial) in the
formula size. We then present an optimization which allows a significant complexity
improvement. We demonstrate this improvement for the function OR, for which the
complexity of the optimized representation is 2O(

√
log n) · n.

An algebraic construction. Our second construction is linear-algebraic in nature, and is
based on a branching program representation. (The relevant branching program models

3 The term “perfect security” binds together perfect privacy and correctness requirements; see,
e.g., [8] for its formal definition.

Perfect Constant-Round Secure Computation via Perfect Randomizing Polynomials 247

are defined in Section 2.2.) We obtain, for any counting branching program of size �,
a perfect degree-3 representation of complexity �2. This construction applies to deter-
ministic branching programs and logspace computation as special cases, but does not
apply to the nondeterministic model.4 In the full version of this paper we show that by
settling for statistical privacy (a relaxation of property (1) of randomizing polynomials)
it is possible to get an efficient representation also in the nondeterministic case. This
yields perfectly-correct (yet statistically-private) constant-round protocols for NL.

We note that since branching programs can simulate formulas, the latter constructions
can be efficiently applied to a presumably larger class of functions than the former.
However, as the OR example demonstrates, the complexity of the (optimized) formula-
based construction can be significantly better.

Efficiency advantages. In addition to providing perfect security in a strictly-constant
number of rounds, our results also offer some independent efficiency advantages. In
the information-theoretic setting, all previous constant-round protocols required either a
significant parallel repetition of certain subprotocols or computation over large fields to
make their failure probability small. (In the context of randomizing polynomials, this is
needed to amplify the separation between the two output distributions.) Our constructions
avoid this overhead. For instance, our perfect solution for branching programs over
F = GF(2) is slightly more efficient than a similar solution from [19] that can only
achieve a small constant separation (which then needs to be amplified).

In the computational setting for secure computation, Yao’s garbled circuit technique
gives rise to constant-round protocols whose efficiency is linear in the circuit size of
the function being computed and a security parameter [26,5,21]. Since none of the
alternative information-theoretic techniques (and ours in particular) efficiently applies
to circuits, they are generally considered less appealing. However, they do offer some
efficiency advantages in the computational setting as well. Most notably, an advantage
of most of these techniques over the garbled circuit approach is that they efficiently
scale to arithmetic computation over large moduli. Our solution for counting branching
programs, which applies to arithmetic formulas as a special case, is especially appealing
in this context. This application and its generalization to arbitrary rings are further
addressed in [12]. Finally, our constructions can be beneficial also in the boolean case;
since their complexity does not involve a cryptographic security parameter (nor does its
analysis hide large constants), they may be preferable for small branching programs or
formulas which arise in specific applications (such as the “millionaire’s problem” [25]).

2 Preliminaries

Notation. We let F denote a finite field; the underlying field F is often omitted when it
can be understood from the context. The statistical distance between two probability
distributions Y0 and Y1 is defined as SD(Y0, Y1) = maxE |Pr[Y0 ∈ E] − Pr[Y1 ∈ E]|.
2.1 Randomizing Polynomials

Syntax. A randomizing polynomials vector p = (p1, . . . , ps) is a vector of polynomials
in the n + m variables x = (x1, . . . , xn) and r = (r1, . . . , rm) over some finite field
F. The variables x1, . . . , xn will be referred to as the inputs of p and r1, . . . , rm as its
random inputs.The output complexity ofp is the number of polynomials s, its randomness

4 Counting is usually more powerful than nondeterminism. However, in the context of perfect
randomizing polynomials it is not clear how to eliminate the extra information provided by the
exact count.

248 Y. Ishai and E. Kushilevitz

complexity is the number of random inputs m, and its complexity is the total number
of all inputs and outputs s + n + m. Finally, the degree of p is defined as the (total)
degree of its maximum-degree entry, where both ordinary inputs and random inputs
count towards the degree.5 For instance, if p = (p1, p2) where p1(x, r) = x1r

2
1 and

p2(x, r) = x1x2 + r1 + r2 + r3, then the degree of p is 3.

Semantics. The following semantics of randomizing polynomials generalize the origi-
nal ones from [19], and incorporate computational efficiency requirements which were
not considered in the original definitions. However, the default notion of randomizing
polynomials remains the same.

For any x ∈ F
n and r ∈ F

m, the output p(x, r) = (p1(x, r), . . . , ps(x, r)) is an
s-tuple over F. For any x ∈ F

n, let P (x) denote the output distribution of p on input x,
induced by a uniform choice of r ∈ F

m. Thus, randomizing polynomials may be thought
of as computing a function from inputs to output distributions. We say that p represents
a function f if the output distribution P (x) “corresponds” to the function value f(x).
Motivated by the application to secure computation, we break this condition into two
requirements, termed privacy and correctness.

Definition 1. A polynomial vector p(x, r) over F is an ε-private, δ-correct randomizing
polynomials representation for a function f : An → B, where A ⊆ F and B is an
arbitrary set, if it has the following two properties:

• ε-correctness. There exists a randomized simulator algorithm S such that for any
input x ∈ An, SD(S(f(x)), P (x)) ≤ ε.

• δ-privacy. There exists a reconstruction algorithm C such that for any x ∈ An,
Pr[C(P (x)) �= f(x)] ≤ δ.

When referring to a uniform family of randomizing polynomials, parameterized by n,
we require that the simulator and the reconstruction algorithms be efficient in n.

By default, we define randomizing polynomials to be 0-private, 1/4-correct (similarly
to [19]). The main new variant considered in this paper is that of perfect randomizing
polynomials, defined as 0-private, 0-correct randomizing polynomials. Finally, we will
also consider a third variant of ε-private, perfectly-correct randomizing polynomials.

2.2 Formulas and Branching Programs

Formulas. A formula is a single-output boolean circuit in n input variables in which
each gate has a fan-out of 1. Specifically, a formula F is a directed binary tree. Each of
its leaves is labeled by a literal which is either a variable from x1, . . . , xn or a negated
variable from x̄1, . . . , x̄n. Each internal node of the tree, referred to as a gate, has two
incoming edges, referred to as wires, and is labeled by either AND or OR. This includes
the node which is the root of the tree; we think of this node as also having an outgoing
wire which is called the output wire of F . Any input x ∈ {0, 1}n naturally assigns a
unique value to each wire. The value of the formula F , denoted F (x), is the value of
its output wire.
Branching programs. Syntactically, a branching program (BP for short) is defined by
a directed acyclic graph G(V,E), two special vertices s, t ∈ V , and a labeling function
φ assigning to each edge in E a literal (i.e., xi or x̄i) or the constant 1. Its size is defined
as |V | − 1. Each input assignment x = (x1, . . . , xn) naturally induces an unlabeled
subgraph Gx, whose edges include every e ∈ E such that φ(e) is satisfied by x. An

5 This convention is crucial for the application to secure multiparty computation.

Perfect Constant-Round Secure Computation via Perfect Randomizing Polynomials 249

accepting path on input x is a directed s− t path in the graph Gx. We attach two main
semantics to branching programs. A mod-q counting BP (CBP for short), where q ≥ 2
is prime, computes the function f : {0, 1}n → GF(q) such that f(x) is the number of
accepting paths on xmodulo q. A mod-q nondeterministic BP (NBP for short) computes
the boolean function f : {0, 1}n → {0, 1}, such that f(x) = 1 iff the number of
accepting paths on x is nonzero modulo q. By setting q to be larger than the possible
number of paths, we get the usual notion of nondeterminism over the integers. Finally,
perhaps the most useful notion of BP is the special case of deterministic BP, where each
input induces at most one accepting paths. A deterministic BP may be viewed as a mod-q
CBP or NBP with an arbitrary q ≥ 2.

2.3 Secure Multiparty Computation

The reader is referred to [8,16,22,15,2] for formal definitions of secure computation.
We emphasize though that the issues addressed in this paper are quite insensitive to
the exact notion of security. Our results provide information-theoretic reductions from
the task of securely computing a general function f , represented by a formula or a
branching program, to that of securely computing a vector of degree-3 polynomials.
Such a reduction, originally described in [19] for the non-perfect case, proceeds as
follows. Given a representation of f(x) by p(x, r), the secure computation of f (whose
n inputs are arbitrarily partitioned among the k players) can be reduced to the secure
computation of the randomized function P (x). The latter, in turn, reduces to the secure
computation of the deterministic function p′(x, r1, . . . , rt+1) def= p(x, r1 + . . .+ rt+1),
where t is the security threshold, by assigning each input vector rj to a distinct party and
instructing it to pick it at random. Note that the degree of p′ is the same as that of p. The
above reduction preserves perfectness: if p(x, r) is a perfect representation for f and if
a perfectly secure protocol is used for evaluating p′, then the resultant protocol for f is
also perfectly secure.6 In the remainder of this paper we will phrase our results in terms
of randomizing polynomials and will not state the corollaries to secure computation.

3 Perfect Randomizing Polynomials from Formulas

In this section we construct perfect degree-3 randomizing polynomials from a boolean
formula representation. The construction works over F = GF(2), which we take to be
the underlying field throughout this section. We start with a basic construction, which
may be viewed as the natural information-theoretic analogue of Yao’s garbled circuit
construction. (Our notation for this section closely follows the presentation of Yao’s
construction from [23].) We later present an optimization of this basic construction.

Let F be a boolean formula of size s computing the function f : {0, 1}n → {0, 1}.
It may be assumed, without loss of generality, that F has depth d = O(log s). We will
efficiently transform F to a perfect degree-3 randomizing polynomials representation
for f , whose complexity is polynomial in s. As usual, denote by x the input for F and
by x1, . . . , xn its individual n variables. Let m be the number of wires in F , where the
m-th wire is the output wire. For i ∈ [m], denote by bi(x) (or simply bi) the value of the
i-th wire induced by the input x. In constructing the randomizing polynomials vector
pF (x, r) we use random inputs of two types: m bits denoted r1, . . . , rm corresponding

6 In the case of security against an active adversary, it is important that the input domain of p′

be defined so that x is taken from An, the input domain of f , rather than from F
n (if they are

different). In the default boolean case (A = {0, 1}) standard protocols from the literature can
be modified to handle such a restriction on the inputs of p′ with little or no efficiency overhead.

250 Y. Ishai and E. Kushilevitz

to the m wires of F , and m pairs of strings W 0
i ,W

1
i again in correspondence with the

m wires. The length of the strings W b
i is defined inductively (from top to bottom) as

follows: |W b
m| = 0 (for b ∈ {0, 1}) and if k is the output wire of some gate g and i, j are

the input wires of this gate then |W b
j | = |W b

i | = 2(|W b
k |+1) (for b ∈ {0, 1}); therefore

the length of each of these strings is at most O(2d) =poly(s). We view each string W b
i

as if it is broken into two equal-size halves denoted W b,0
i ,W b,1

i . We use ci to denote the
value of wire i masked by ri; namely, ci = bi ⊕ ri.

To define the polynomial vector pF , we specify several polynomials for each wire.
In what follows ⊕ denotes bitwise-xor among strings; when we want to emphasize that
the operation is applied to single bits we will usually denote it by either + or −. We call
meta-polynomial a polynomial that involves strings. Each meta-polynomial has a simple
transformation into a vector of polynomials that operate bit-by-bit (e.g., for a ∈ GF(2)
and stringsA,B of length t the expression a ·A⊕B is a meta-polynomial that represents
the length-t polynomial vector (a·A1+B1, . . . , a·At+Bt). When we want to emphasize
that a term T is actually a string we write 〈T 〉. We use ◦ to denote concatenation. We
now describe the polynomial vector associated with each wire.

Input wires: For an input wire i, labeled by a literal �, we use the following meta-
polynomial 〈W �

i ◦ (�+ ri)〉. Note that � is either some variable xu or its negation, which
can be written as the degree-1 polynomial 1 − xu. Also, note that each term W �

i can be
represented by � ·W 1

i ⊕ (1 − �) ·W 0
i . All together, this is a degree-2 meta-polynomial

which, as described above, is just a short writing for a vector of degree-2 polynomials
over the boolean inputs x and boolean random inputs r,W .

Output wires of gates: Let g be a gate with input wires i, j and output wire k. We
associate with this wire 4 meta-polynomials. Specifically, for each of the 4 choices of
ci, cj ∈ {0, 1}, we define a corresponding meta-polynomial on strings of length |W b

k |+1.
This degree-3 meta-polynomial can be thought of as the garbled table entry indexed by
(ci, cj) and is defined as follows:

Q
ci,cj

k (x, r) def= W
ci−ri,cj

i ⊕ W
cj−rj ,ci

j ⊕ 〈W g(ci−ri,cj−rj)
k ◦ (g(ci− ri, cj − rj) + rk)〉 (1)

Note that Qci,cj

k actually depends only on the random inputs. Also note that g is
either an AND gate, in which case g(a, b) = a ·b, or an OR gate, in which case g(a, b) =
1 − (1 − a) · (1 − b); hence all occurrences of g in the above expression can be replaced
by degree-2 polynomials. Moreover, as above, each expression of the form Wh

i can be
represented by h ·W 1

i ⊕ (1 − h) ·W 0
i . The degree of the meta-polynomial Qci,cj

k is 3.

Output wire of the formula: With this wire we associate a single degree-1 polynomial
(in addition to the 4 meta-polynomials Qci,cj

m , as described above) which is simply the
random input rm.

We now show that the above construction is perfectly correct and private.

Correctness. Given α = pF (x, r), it is possible to go over the formula from bottom to
top and compute for each wire i the value 〈W bi

i ◦ ci〉. Applying this to the output wire
m, and since for this wire we also have rm in the output of pF (by the construction),
one can compute f(x) = bm = cm + rm as required.

Privacy. Consider any output vector, α, of pF . This output consists of an output bit for
each of the polynomials described above. Let α′ be the vector α excluding its last bit
(i.e., the value rm); we claim that given any possible input x the output α′ is obtained
with the same probability. As a first step, by the correctness proof, for each wire i of F ,
the vector α′ completely determines the string W bi

i and the bit ci (also note that the bi’s

Perfect Constant-Round Secure Computation via Perfect Randomizing Polynomials 251

are determined by x). Therefore, if indeed α′ is equally possible given any x, and since
rm = cm + f(x), then α reveals nothing but f(x).

It remains to prove that for every input x the vector α′ has the same probability to
appear in the output. For this, consider the valuesW bi

i , ci for any i (which, as argued, are
totally determined given α′). We show, by induction from top to bottom, that the number
of choices for the strings W 1−bi

i that are consistent with α′ is independent of x. This
is clearly true for the output wire since |W 1−bm

m | = 0. For the induction step consider
an output wire k of a gate g whose input wires are i, j and assume, without loss of
generality, that ci = cj = 0 (otherwise we just need to permute the 4 polynomials below
accordingly). In this case α contains the output of the following 4 meta-polynomials:

Q0,0
k (x, r) = W bi,0

i ⊕ W
bj ,0
j ⊕ 〈W g(bi,bj)

k ◦ (g(bi, bj) + rk)〉
Q0,1

k (x, r) = W bi,1
i ⊕ W

1−bj ,0
j ⊕ 〈W g(bi,1−bj)

k ◦ (g(bi, 1 − bj) + rk)〉
Q1,0

k (x, r) = W 1−bi,0
i ⊕ W

bj ,1
j ⊕ 〈W g(1−bi,bj)

k ◦ (g(1 − bi, bj) + rk)〉
Q1,1

k (x, r) = W 1−bi,1
i ⊕ W

1−bj ,1
j ⊕ 〈W g(1−bi,1−bj)

k ◦ (g(1 − bi, 1 − bj) + rk)〉

Note that at this stage we already assigned values to both strings corresponding to the
output wire k of this gate, i.e. to W bk

k ,W 1−bk

k (and clearly g(bi, bj) = bk; together with
ck this determines rk). Hence, the third summand in each of the above meta-polynomials
is already fixed. On the other hand, for the input wires i, j we are only committed to the
values W bi

i ,W
bj

j and still have the freedom to choose W 1−bi
i ,W

1−bj

j . Examining the 4
equations above we make the following observations: (a) in the first equation there are
no unknowns (in fact, when we chooseW bk

k in the first part of the proof, we choose it so
that this equation holds). (b) in the second and third equations there is a unique choice
for W 1−bj ,0

j ,W 1−bi,0
i that satisfies the equation. (c) in the fourth equation we have a

constraint on what the stringW 1−bi,1
i ⊕W

1−bj ,1
j should be. The number of choices that

satisfy this constraint is clearly independent of x, as needed.

Efficiency. The complexity of the above construction is dominated by the total size of the
strings W b

i for all input wires i. The length of each stringW b
i depends only on the depth

of wire i. For a wire of depth d, this length is O(2d). For example, if F is a balanced
formula of size s and depth log2 s, then the complexity of pF is O(s2).

3.1 An Efficiency Improvement

The above proof of privacy leaves some freedom in choosing the random strings (case (c)
above). We can get rid of this freedom and thereby obtain some efficiency improvements
over the basic construction. To do this, we break the symmetry between the 2 input wires
i, j of each gate. We associate with one of these two wires, say j, a shorter string by
letting W b,1

j = W b,0
j for b ∈ {0, 1}. The proof of correctness remains as before. In

the proof of privacy, we no longer have freedom in (c), as W 1−bj ,1
j was already fixed

(because W 1−bj ,1
j = W

1−bj ,0
j); hence, there is a unique way to choose W 1−bi,1

i so
as to satisfy the fourth equation (and this is, again, independent of x). The efficiency
improvement is obtained since we do not have |W b

i | = |W b
j | = 2(|W b

k | + 1) as before,
but rather we can do with |W b

j | = |W b
k | + 1 and only |W b

i | = 2(|W b
k | + 1).

This simple observation already leads to some significant efficiency improvements. If
F is a completely balanced formula of size s and depth d = log2 s, then the total length of
the stringsW b

i (which dominates the complexity of pF) is now onlyO(3d) = O(slog2 3).

252 Y. Ishai and E. Kushilevitz

For instance, since the ORn function (OR of n bits) admits such a balanced formula,
this basic optimization applies to ORn yields complexity of O(nlog2 3) (compared with
O(n2) given by the basic construction).

A further efficiency gain may be obtained by skewing the formula tree so that each of
its leaves has roughly the same contribution to the overall complexity. We leave open the
question of converting a general formula into an optimal equivalent form, and proceed
with the interesting special case of the function ORn (or, equivalently, ANDn). A useful
feature of this function is that there is a complete freedom in choosing the shape of its
formula: any binary tree T with n leaves naturally induces a formula FT for ORn, where
the leaves are labeled by the n distinct inputs and the internal nodes by binary OR gates.
Hence, our problem is equivalent to finding a binary tree T of size n which minimizes
the total weight of its n vertices subject to the following constraints: (1) the root has
weight 0; (2) if v is an internal node of weight w, then the weights of its two sons are
w+1 and 2(w+1). It can be shown that such a tree T of total weight n · 2O(

√
log n) can

be efficiently constructed (details omitted for lack of space). Hence, there is a perfect
degree-3 representation for ORn of complexity n · 2O(

√
log n).

4 Perfect Randomizing Polynomials from Branching Programs

In this section we construct perfect randomizing polynomials from a branching program
representation. First, in Section 4.1, we give an overview of our solutions and provide
some background and intuition. Then, in Section 4.2, we present a construction for CBP
(which includes deterministic branching programs as a special case) and state our result
for NBP whose proof is omitted from this version.

4.1 Overview of Constructions

Before describing our new solutions, it is instructive to review some previous ideas and
techniques from [18,19] on which we rely. The previous construction of (nonperfect)
randomizing polynomials from branching programs [19] uses an NBP representation,
and is based on the following two facts.

Fact 1. [18] Given a mod-q NBP of size � computing f , there exists a function L(x),
mapping an input x to an �× � matrix over F = GF(q), such that:

• Each entry of L(x) is a degree-1 polynomial in a single variable xi.
• f(x) is in one-to-one correspondence with rank(L(x)). Specifically, if f(x) = 1

then L(x) is of full rank, and if f(x) = 0 then its rank is one less than full.

Fact 2. [19] Let M be an arbitrary square matrix over F, and R1,R2 be independent
uniformly random matrices of the same dimension. Then, the distribution of the random
variable R1MR2 depends only on rank(M). Moreover, if rank(M) �= rank(M ′) then
SD(R1MR2, R1M

′R2) > εq, where εq is a constant depending only on q.

The final degree-3 representation, based on the above two facts, has the form p(x,
R1, R2) = R1L(x)R2, where both the random inputs and the output vector are parsed
as matrices. Randomizing polynomials of this form cannot possibly achieve perfect
correctness: setting all of the random inputs to 0 will always yield an all-0 output vector.
A natural solution that comes to mind is to replace R1 and R2 by uniform nonsingular
matrices. It is easy to see that perfect correctness will be achieved, and it can also be
argued that the perfect privacy will not be violated. However, it is not clear how to
incorporate random nonsingular matrices into the randomizing polynomials framework;
in fact, it follows by a divisibility argument that it is impossible to generate a uniformly

Perfect Constant-Round Secure Computation via Perfect Randomizing Polynomials 253

random nonsingular matrix over a finite field F from (finitely many) uniform random
elements of F, regardless of the complexity or the degree of such a generation.

To get around this problem, we take a closer look at the matrices L(x) generated
by the mapping L. It turns out that, for matrices of this special form, it is possible
to pick R1 and R2 from carefully chosen subgroups of nonsingular matrices, so that:
(1) random matrices from these subgroups can be generated by degree-1 polynomials;
(2) R1L(x)R2 achieves perfect privacy and correctness with respect to the number of
accepting paths (mod q) on input x. This approach gives our solution for CBP, presented
next. However, it falls short of providing an efficient solution for their nondeterministic
counterparts, except when the modulus q is small.

4.2 Counting Branching Programs

Throughout this section let F = GF(q), where q is an arbitrary prime. Our goal is
to convert a mod-q counting branching program computing f : {0, 1}n → F into an
efficient representation of f by perfect degree-3 randomizing polynomials. As outlined
above, we start with a refined version of Fact 1. Its proof is similar to that of Fact 1
(from [18]) and is omitted.

Lemma 1. Suppose there is a mod-q CBP of size � computing f . Then, there exists a
function L(x), mapping an input x to an �× � matrix over F = GF(q), such that:

• Each entry of L(x) is a degree-1 polynomial in a single input variable xi.
• L(x) contains the constant −1 in each entry of its second diagonal (the one below

the main diagonal) and the constant 0 below this diagonal.
• f(x) = det(L(x)).

Our variant of Fact 2 relies on the following simple randomization lemma.

Lemma 2. Let H be a set of square matrices over F, and G1,G2 be multiplicative groups
of matrices of the same dimension as H. Denote by ‘∼’ the equivalence relation on H
defined by: H ∼ H ′ iff there exist G1 ∈ G1, G2 ∈ G2 such that H = G1H

′G2. Let
R1, R2 be uniformly and independently distributed matrices from G1,G2, respectively.
Then, for any H,H ′ such that H ∼ H ′, the random variables R1HR2 and R1H

′R2
are identically distributed.

Lemma 2 will be instantiated with the following matrix sets.

Definition 2. Let H be the set of �×�matrices over F = GF(q) containing only −1’s in
their second diagonal (the diagonal below the main diagonal), and 0’s below the second
diagonal. Define two matrix groups G1 and G2 as follows:

- G1 consists of all matrices with 1’s on the main diagonal and 0’s below it.
- G2 consists of all matrices with1’s on the main diagonal and0’s in all of the remaining

entries except, perhaps, those of the rightmost column.

From now on, ‘∼’ denotes the equivalence relation on H induced by G1,G2, as defined
in Lemma 2.

The following lemma shows that a matrix from H can be brought into a canonical
form, uniquely defined by its determinant, by multiplying it from the left by some
G1 ∈ G1 and from the right by some G2 ∈ G2.

Lemma 3. For any H ∈ H there exist G1 ∈ G1 and G2 ∈ G2 such that G1HG2
contains −1’s in its second diagonal, det(H) in its top-right entry, and 0’s elsewhere.

254 Y. Ishai and E. Kushilevitz

Proof. Consider two types of matrix operations: (a) Add to row i some multiple of row
i′ > i; (b) Add to the last column a multiple of some other column. As illustrated in
Figure 1, a matrixH ∈ H can be transformed, using a sequence of (a) and (b) operations,
to a matrix H0 containing −1’s in its second diagonal, an arbitrary value in its top-right
entry, and 0’s elsewhere. Note that none of these operations changes the determinant,
and hence det(H0) = det(H). It follows that the top-right entry of H0 must be equal
to its determinant. We conclude the proof by observing that each operation of type (a)
is a left-multiplication by a matrix from G1, and each operation of type (b) is a right-
multiplication by a matrix from G2. ��




∗ ∗ ∗ ∗ ∗ ∗
−1 ∗ ∗ ∗ ∗ ∗

0 −1 ∗ ∗ ∗ ∗
0 0 −1 ∗ ∗ ∗
0 0 0 −1 ∗ ∗
0 0 0 0 −1 ∗




(a)
=⇒




0 0 0 0 0 ∗
−1 0 0 0 0 ∗

0 −1 0 0 0 ∗
0 0 −1 0 0 ∗
0 0 0 −1 0 ∗
0 0 0 0 −1 ∗




(b)
=⇒




0 0 0 0 0 ∗
−1 0 0 0 0 0

0 −1 0 0 0 0
0 0 −1 0 0 0
0 0 0 −1 0 0
0 0 0 0 −1 0




Fig. 1. Bringing a matrix H ∈ H to a canonical form H0

The following is an easy corollary.

Lemma 4. Let H,G1,G2 be as in Definition 2. Then, for any H,H ′ ∈ H, det(H) =
det(H ′) implies H ∼ H ′.

Our final randomizing polynomials construction is given in the next theorem.

Theorem 1. Suppose that f can be computed by a mod-q counting branching program
of size �. Then, there exists (constructively) a representation of f by perfect degree-3 ran-
domizing polynomials over F = GF(q), with output complexity

(
�+1
2

)
and randomness

complexity
(

�
2

)
+ �− 1.

Proof. Consider the polynomial vector p(x, r1, r2) = R1(r1)L(x)R2(r2), where L is
as promised by Lemma 1, andR1 (resp.,R2) is a degree-1 mapping of the random inputs
r1 (resp., r2) to a uniformly random matrix from G1 (resp., G2). Note that the number of
random field elements that r1 and r2 should contain is

(
�
2

)
and �−1, respectively. Hence

the specified randomness complexity. For the output complexity, note that it is enough to
include the

(
�+1
2

)
entries of the output matrix on or above the main diagonal. The perfect

privacy of p follows from Lemmas 1,2, and 4. Finally, its perfect correctness follows
from the fact that the determinant of the output matrix is always equal to det(L(x)),
which by Lemma 1 is equal to f(x). ��

Due to lack of space, we omit the full treatment of the nondeterministic case. If the
modulus q is small, the problem reduces to the previous counting case. In general, how-
ever, we are only able to obtain perfect correctness by relaxing the privacy requirement.
The main relevant theorem is the following:

Theorem 2. Given a mod-q NBP of size � computing f and a security parameter k, it is
possible to compute in time poly(�, log q, k) a perfectly-correct, 2−k-private, degree-3
randomizing polynomials representation of f over GF(2).

Perfect Constant-Round Secure Computation via Perfect Randomizing Polynomials 255

Remark. An alternative approach for obtaining perfect constant-round protocols for
CBP is to reduce the problem to an inversion of a triangular matrix. Specifically, the
value of the CBP may be obtained as the top-right entry of (I − Ax)−1, where Ax is
the adjacency matrix of the graph Gx (cf. [18]). Since I − Ax ∈ G1, a straightforward
modification of the secure inversion protocol from [1] (essentially replacing random
nonsingular matrices by random matrices from G1) can be used to compute the desired
entry with perfect security and a strictly constant number of rounds. A disadvantage of
this solution is that it requires more rounds than a protocol based on degree-3 randomizing
polynomials.

Acknowledgments. We thankAmos Beimel, Ronald Cramer, Ivan Damgrard, and Serge
Fehr for helpful discussions and comments.

References

1. J. Bar-Ilan and D. Beaver. Non-cryptographic fault-tolerant computing in a constant number
of rounds. In Proc. of 8th PODC, pages 201–209, 1989.

2. D. Beaver. Secure Multi-party Protocols and Zero-Knowledge Proof Systems Tolerating a
Faulty Minority. J. Cryptology, Springer-Verlag, (1991) 4: 75-122.

3. D. Beaver. Minimal-latency secure function evaluation. EUROCRYPT 2000.
4. D. Beaver, J. Feigenbaum, J. Kilian, and P. Rogaway. Security with low communication

overhead. In Proc. of CRYPTO ’90, pages 62–76.
5. D. Beaver, S. Micali, and P. Rogaway. The round complexity of secure protocols (extended

abstract). In Proc. of 22nd STOC, pages 503–513, 1990.
6. M. Ben-Or, S. Goldwasser, and A. Wigderson. Completeness theorems for non-cryptographic

fault-tolerant distributed computation. STOC, 1988.
7. C. Cachin, J. Camenisch, J. Kilian, and J. Muller. One-round secure computation and secure

autonomous mobile agents. In ICALP 2000.
8. R. Canetti. Security and composition of multiparty cryptographic protocols. J. of Cryptology,

13(1), 2000.
9. D. Chaum, C. Crépeau, and I. Damgrard. Multiparty unconditionally secure protocols (ex-

tended abstract). In Proc. of 20th STOC, pages 11–19, 1988.
10. R. Cramer and I. Damgrard. Secure distributed linear algebra in a constant number of rounds.

In Proc. Crypto 2001.
11. R. Cramer, I. Damgrard, and U. Maurer. General secure multi-party computation from any

linear secret-sharing scheme. In Proc. of EUROCRYPT 2000.
12. R. Cramer, S. Fehr, Y. Ishai, and E. Kushilevitz. Efficient Multi-Party Computation over

Rings. Manuscript, 2002.
13. U. Feige, J. Kilian, and M. Naor. A minimal model for secure computation (extended abstract).

In Proc. of 26th STOC, pages 554–563, 1994.
14. R. Gennaro,Y. Ishai, E. Kushilevitz and T. Rabin. The Round Complexity of Verifiable Secret

Sharing and Secure Multicast. In Proc. 33rd STOC, 2001.
15. S. Goldwasser and L. Levin. Fair Computation of General Functions in Presence of Immoral

Majority. In CRYPTO ’90, LNCS 537, Springer-Verlag, 1990.
16. O. Goldreich. Secure multi-party computation.

www.wisdom.weizmann.ac.il/∼oded/pp.html, 2000.
17. O. Goldreich, S. Micali, and A. Wigderson. How to play any mental game (extended abstract).

In Proc. of 19th STOC, pages 218–229, 1987.
18. Y. Ishai and E. Kushilevitz. Private simultaneous messages protocols with applications. In

Proc. of ISTCS ’97, pp. 174-183, 1997.
19. Y. Ishai and E. Kushilevitz. Randomizing Polynomials: A New Representation with Applica-

tions to Round-Efficient Secure Computation. In Proc. of FOCS ’00.

256 Y. Ishai and E. Kushilevitz

20. J. Kilian. Basing cryptography on oblivious transfer. STOC ’98, pp. 20-31, 1988.
21. Y. Lindell. Parallel Coin-Tossing and Constant-Round Secure Two-Party Computation. In

Prof. of Crypto ’01.
22. S. Micali and P. Rogaway. Secure computation. In Proc. of CRYPTO ’91.
23. M. Naor, B. Pinkas, and R. Sumner. Privacy Preserving Auctions and Mechanism Design. In

Proc. ACM Conference on Electronic Commerce 1999, pages 129-139.
24. T. Sandler, A. Young, and M. Yung. Non-interactive cryptocomputing for NC1. In Proc. of

40th FOCS, pages 554–566, 1999.
25. A. C. Yao. Protocols for secure computations (extended abstract). In Proc. of FOCS 1982.
26. A. C. Yao. How to generate and exchange secrets. In Proc. of FOCS 1986.

	Introduction
	Secure Multiparty Computation and Its Round Complexity
	Our Results

	Preliminaries
	Randomizing Polynomials
	Formulas and Branching Programs
	Secure Multiparty Computation

	Perfect Randomizing Polynomials from Formulas
	An Efficiency Improvement

	Perfect Randomizing Polynomials from Branching Programs
	Overview of Constructions
	Counting Branching Programs

