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Abstract

This is part of a proposal submitted to NSF together with Allison Bishop Lewko in 2014
(and subsequently awarded). This part was written by Tal Malkin, influenced by discussions
with various people (most notably Christina Brzuska, Siyao Guo, Igor Carboni Oliveira, and
Alon Rosen). I reproduce it here for students in my advanced cryptography class, to give some
possible ideas for a project combining cryptography and complexity (among other suggestions
given to students). Note that some progress on the problems described here has been achieved,
and I give some pointers in the last “addendum” section. However, most of the directions here
remain open and interesting to explore. Finally, note that this, by nature of being a proposal,
was written in a more informal and optimistic way than a research paper describing completed
work would be written.

1 Complexity of Pseudorandom Primitives

Pseudorandom generators (PRG) and pseudorandom functions (PRF) are fundamental crypto-
graphic primitives, well studied in the theoretical community, and widely used (often under the
names “stream ciphers” and “block ciphers”) in practice. Classic results in cryptography prove
that PRG and PRF are equivalent to each other, and to many other fundamental cryptographic
primitives such as one way functions (OWF), signatures, symmetric encryption, authentication,
and more, where equivalence is defined by the existence of a polynomial time reduction. However,
these primitives are not all created equal. For example, if G is a PRG, it is immediately also a
OWF, while constructing PRG from OWF is much more complex in various ways. As another
example, given a PRF it is easy to construct a PRG of the same parallel-time complexity, while
the GGM construction of PRF from PRG [13] incurs a multiplicative linear blow up in the circuit
depth (as the PRG is applied sequentially for each bit of the input). There is also a wide gap
between the efficiency of theoretical implementations of PRF and the corresponding designs used
in practice (e.g., AES). The former have provable security based on well studied computational
assumptions, but with a high price in performance. This motivates the following.

Research Goals: minimize the complexity of pseudorandom primitives while keeping as-
sumptions minimal, explore how large the complexity gap between PRG and PRF must be, and
understand whether one can get some of the benefits of PRF at a lower price.

Progress on these goals will help us gain a deeper theoretical understanding of these fundamental
primitives, and may also serve as a step towards more practical provably secure pseudorandom
primitives (for example, low depth circuits admit faster hardware and parallel implementations).
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Towards these goals, we will also study weaker notions of PRF, focusing on weak PRF (WPRF),
which is required to be indistinguishable from a random boolean function1 if given a polyno-
mial number of uniformly random input output pairs. That is, {fk : {0, 1}n → {0, 1}}k∈{0,1}`
is a WPRF if for any efficient adversary (distinguisher), when given polynomially many samples
(x1, f(x1)), . . . (xq, f(xq)) where x1, . . . , xq are independent uniform strings from {0, 1}n, the dis-
tinguisher cannot tell whether the function used is a random member fk of the family, or a truly
random function. Note that WPRF is qualitatively stronger than PRG, in that its output must
look random even when the input is known. But it is qualitatively weaker than (strong) PRF, since
PRF allows the inputs to not only be seen but also chosen by the adversary.

WPRF have not been studied nearly as extensively as PRF, but this is beginning to change
(cf., [22, 9, 21, 24, 10, 19, 1]. We believe that WPRF hold a lot of untapped potential for providing
a good tradeoff between security and efficiency. Indeed, WPRF is sufficient – in a direct and
efficient way – for many of the main applications that PRF has been used for (e.g., encryption and
authentication). Moreover, as exemplified by several of the recent papers, WPRF seems to allow
for significant gains in efficiency and make certain tasks easier (e.g., leakage resilience [24]). As a
toy example, it is not hard to show that WPRF allow for a very simple domain extension technique,
where given a WPRF {fk} with input size n, one can obtain a WPRF {f ′

k} with larger input size,
by simply projecting the larger input to a fixed n-bit subset (say the prefix) and applying fk to
it, resulting in only a small degradation in security. This is a simplification of Levin’s domain
extension technique for PRF, which required an almost universal hash function.

There are other reasons to focus on WPRF, including their connection to learnablity (roughly
speaking, learnability of a class precludes it from having a WPRF, and a limited version of the
converse can also be proved). One main motivation for us is the potential for constructing WPRF in
complexity classes where PRF provably cannot exist. This direction was put forward very recently
by Akavia et al. [1], who provide the first such (conjectured) WPRF candidate. We next elaborate
on this and our proposed research questions.

1.1 Circuit Complexity of WPRF

We start with a brief reminder of some relevant complexity classes. All the classes we discuss
are of polynomial size circuits, and thus we omit explicit mention of this. Recall that NCi is the
class of depth O(logi(n)) Boolean circuits with bounded fan-in. AC0 is the class of constant-depth,
unbounded fan-in circuits, AC0[m] allows MODm gates in addition to AND, OR, NOT (thus, AC0[2]
allows parity gates), and AC0 ◦MOD2 is a subclass of AC0[2] where parity gates are allowed only
on the bottom layer. TC0 is the class of constant depth unbounded fan-in circuits with threshold
gates in addition to AND,OR,NOT. Known relationships among these classes are summarized as
follows (several of these containments are believed or conjectured to be strict):

NC0 ⊆ AC0 ⊂ AC0 ◦MOD2 ⊆ AC0[2] ⊂ TC0 ⊆ NC1 ⊆ NC

PRG: It is believed that PRG exist in NC0. Indeed, Applebaum, Kushilevitz and Ishai [2] prove
that if PRG exist in, say, NC1 (which is the case under standard cryptoraphic assumptions such as
hardness of factoring), then it can be compiled into a PRG in NC0 where each bit of the output
depends on only 4 bits of the input.

1We focus here on boolean functions. Functions with m bit output can be expressed as m boolean functions.
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PRF: In contrast, PRF cannot exist even in higher classes. First, Linial, Mansour and Nisan [17]
proved that AC0 can be learned in quasi-polynomial time, and thus there are no (exponentially
secure) PRFs in AC0. A stronger result proving that PRF cannot exist even in AC0[2], was proved
by Razborov and Rudich [25], via the natural proofs barrier. On the positive side, there are
constructions of PRF in TC0 based on concrete assumptions of DDH and LWR [22, 3]. As for PRF
from generic assumptions, Naor and Reingold [22] also show constructions of PRF from WPRF (via
synthesizers) of logarithmic depth (which further motivates the search for complexity of WPRF).
However, no parallel (NC) constructions of PRF from PRG are known; in fact, the linear depth of
the classic GGM construction of PRF from PRG has not been improved.
WPRF: What are the lower and upper bounds for the complexity of WPRF? First, we note that
the proof of [25] about impossibility of PRF in AC0[2] does not carry through for WPRF. Indeed,
their proof involves querying the function on specific inputs (e.g., all those with a suffix of zeros),
which are very unlikely to be sampled through a random selection of polynomially many inputs.
However, the learning result of [17] has the same consequences even for WPRF, implying that
WPRF cannot exist in AC0. This discrepancy between the lower bounds for PRF and WPRF begs
the following question:

Does AC0[2] (or better yet, AC0 ◦MOD2) contain weak pseudorandom functions (WPRF)?
This question was posed very recently by Akavia et al. [1], who started investigating it. They

conjecture that the answer is yes, and provide a concrete function in AC0◦MOD2 that they conjecture
is a WPRF. While they do not have a proof, they provide some evidence to its pseudorandomness by
showing that it avoids specific attacks on PRFs in this class. They also study the class AC0 ◦MOD2

more generally, providing some conjectured properties of the class which they prove for some cases.
We propose to study this question, trying to prove a positive answer based on any standard

assumption, or alternatively trying to prove lower bounds. One direction to start with is proving
that the proposed candidate, or another one in AC0 ◦MOD2, is a WPRF under the LPN (learning
with noise) assumption.[1] proved LPN may be necessary (under the conjecture mentioned below);
proving that it is sufficient would be very interesting.

Another direction we will study, is trying to come up with a WPRF family in AC0[2], trying to
utilize the possibly stronger power of this class. In particular, IPn ∈ AC0[2] is conjectured not to
be in AC0 ◦MOD2 [26]. Moreover, [1] conjecture that all AC0 ◦MOD2 functions have a large Fourier
coefficient (which is false for IPn). Thus, perhaps we can find a way to use IPn in a construction of
WPRF (perhaps by exploiting the fact that IPn is self-reducible?).

A different approach is to start with an arbitrary WPRF in a relatively high complexity class
(say NC1), and see if we can compile it into WPRF in AC0[2]. This is reminiscent of the randomized
encodings approach, that allowed Applebaum, Ishai and Kushilevitz [2] to compile various cryp-
tographic primitives (PRG, OWF, CRHF, PKE, Signatures, Commitment, ZKP) from a higher
compelxity class to NC0. Of course, their notion of randomized encodings could not work for
WPRF, because there cannot be WPRF in NC0. [2] discuss what fails trying to apply their ap-
proach to PRF, and while one of their arguments does not hold for WPRF, the main argument
does: a randomized encoding needs secret and fresh randomness, while WPRF have either secret
randomness that is reused (the key), or fresh randomness that is given to the adversary (the input).
Nonetheless, we feel there is some hope in trying to generalize the notion, since we do not need
the resulting function to be in NC0, but rather in AC0[2]. We will thus investigate the following
question:

Can we develop a generalized version of “randomized encodings” that could be applied to WPRF?
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The most general result would be a definition and construction of randomized encodings that can
work (from/to) higher complexity classes. A more specific direction towards our goal, is finding
a randomized encoding with the following properties. Given a WPRF F (k, x) = fk(x), define
a randomized encoding F̂ (k, x, r) ∈ NC0 and then construct a WPRF of the form hk,r(x, s) =

Ext(F̂ (k, x, r), s) where Ext is a strong computational extractor (with first argument being the
source and the second argument being the seed). The idea here is that F̂ ∈ NC0 need not (and
cannot) be a WPRF itself (so we relax the security requirement of randomized encodings), but
should have enough computational entropy that can be extracted by a computational extractor. In
order for this approach to possibly work, we need to carefully choose both the encoding and the
extractor. For the encoding, F̂ must preserve enough of computational entropy from F (this is not
the case in general for any encoding). For the extractor, its complexity cannot be too low, so that
the resulting function does not fall in AC0; it also cannot be too high, as our goal is to achieve
WPRF in as low complexity as possible.

A final approach we are planning to check, is trying to base a WPRF directly on Goldreich’s
[12] candidate OWF in NC0.

If the above directions do not seem successful, we will also try to work on proving impossibility
of WPRF in AC0 ◦ MOD2. One place to start is trying to extend the ideas behind the “natural
proof” attacks of [25]. As mentioned above, their current proof applies to PRFs, and it is not hard
to adapt it to apply also to non-adaptive PRF (NAPRF), where the adversary must submit all
queries non-adaptively. Using a result of [16], we have extended their proof to rule out NAPRF
(and thus also PRF) not only in AC0[pk] for any prime p, but also to restricted TC0 with at most
n1+α wires.

Extending the results to WPRF is more challenging. We will explore whether we can infer
additional properties of most common circuit lower bounds that allow us to rule out weak PRFs
in low complexity classes such as ACC. What about lower bound proofs that establish stronger
results, such as average-case hardness? This direction is challenging, as it is likely that new attacks
on WPRF will give new learning results. Nonetheless, it is conceivable that this would not be the
case, if the new attacks rely on a distinguisher with a large number of samples.
Complexity of (W)PRF from PRG. We next turn out attention to the question of constructing
WPRF (or PRF), from generic assumptions, and in particular from PRG. We ask: What is the
minimal parallel complexity of WPRF constructions based on any PRG? Can we improve over
GGM? Is there an NC reduction of WPRF to PRG?

While we have constructions of PRF in NC (even in TC0) from concrete assumptions, the above
questions (stated already in [22]) remain open, even for WPRF. Note that if we show an NCi

reduction of WPRF to PRG, we will obtain an NCi+1 reduction of PRF to PRG, and will prove
that PRG in NC1 implies WPRF in NCi and PRF in in NCi+1.

One natural approach towards constructing such a reduction, is to “parallelize” the GGM
construction: the input x (possibly after some processing) is divided to blocks of size up to log n
bits, then the GGM construction is applied on each of the blocks, and the results are combined
using some combining function C. The combining function C should be chosen carefully, so as
to avoid learning attacks. We have started exploring this approach as well as two others towards
answering the above question.

We will also study a related question which may be easier: can we construct WPRF from
trapdoor permutations (TDP)? In particular, we will explore constructions of TDP with parallel
complexity for their sampling and inverting algorithms. Any such construction in NC will yield
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a PRF in NC, using a result shown by [22]. This will provide the first parallel construction of
PRF from generic assumptions. We will study a (generalized) randomized encoding approach to
achieving this.

A different aspect of the reduction complexity of PRF to PRG is one that deals with the number
of applications, rather than the depth. We ask: How many applications of PRG are necessary to
construct WPRF? How many applications of WPRF are necessary to construct PRF?

The GGM construction uses linearly many calls to the PRG, as well as a linear depth. While
so far we discussed minimizing the latter, we now propose to minimize the former. We start with a
basic form of this question: can we rule out WPRF from PRG with a single application of the PRG
(and arbitrary non-cryptographic polynomial computations)? We will then study the more general
question posed above, trying to find upper and lower bounds (through black-box separations) for
the reduction complexity of WPRF to PRG, as well as of PRF to WPRF.

1.2 The Power of Negation for Pseudorandom Primitives

Let f : {0, 1}n → {0, 1} be an arbitrary function. We define the negation complexity of f , denoted by
Neg(f), to be the minimum number of negation gates in any fan-in two circuit with AND,OR,NOT
gates computing f . In particular, f is monotone if and only if Neg(f) = 0. For a monotone function
f , one can ask whether f has a polynomial size monotone circuit (namely a circuit with no negation
gates).

The study of monotone classes of functions and negation complexity has been prevalent in the
complexity community as well as in computational learning theory, but little attention has been
given to it in the cryptographic context (we will discuss two relevant exceptions [8, 14]). Recently,
Goldreich and Izsak [14] have initiated a study of whether basic cryptographic primitives may be
monotone. They study OWF and PRG, and show an inherent gap between the two in this respect,
by proving: (1) if any OWF exist, then there exist OWF with polynomial-size monotone circuits, but
(2) no monotone function can be a PRG. To quote from their paper: these two results indicate that
in the “monotone world” there is a fundamental gap between one-way functions and pseudorandom
generators; thus, the “hardness-vs-randomness” paradigm fails in the monotone setting.

We propose to expand their study in two directions: studying stronger primitives (WPRF and
PRF), and studying the negation complexity (rather than just monotonicity) of these primitives.
We believe that these directions are natural and interesting. For example, this study may enlighten
us regarding the “randomness-vs-unpredictability” paradigm in the monotone world.

We start by recalling an important classic result regarding negation complexity of arbitrary
boolean functions. Markov [20] proved (in 1958) that for any boolean function f on n variables,
Neg(f) ≤ log(n + 1).2 Fischer [11] extends Markov’s theorem to prove that this transformation
from any circuit computing f to one with only log(n+1) negations can be made efficient. Moreover,
it can be shown [18] that these negations can be computed directly on the input x, independently
of the function f . That is, there is a fixed Mn : {0, 1}n → {0, 1}log(n+1) with log(n + 1) negations,
such that for any f : {0, 1}n → {0, 1} that can be computed by a circuit of size s, there is a
monotone circuit A of size poly(s), satisfying A(x,Mn(x)) = f(x) for all x. Next, we summarize
specific questions we plan to pursue and some preliminary progress.
Negation complexity of PRG. Based on the above, we know that the negation complexity of

2In fact, Markov proved something more general, essentially proving that the negation complexity of a function is
equal to its “alternating complexity”, which we will not define here.
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any PRG is more than 0, and at most logarithmic. We ask whether there exists a PRG G such that
0 < Neg(G) << log n? In particular, does there exist a PRG that can be computed by a circuit
with a single negation? We will study these questions, possibly trying to leverage recent techniques
from [5].
Negation complexity of PRF. It is easy to see that no monotone function can be a PRF.
Indeed, the distinguisher may simply ask two queries x ≺ x′ and check whether the outputs satisfy
f(x) � f(x′). For a monotone function the answer must always be yes, but for random functions
there is 25% probability that the answer will be no. What can be done with more negations? In
preliminary work, we3 have succeeded to settle the negation complexity for any PRF, showing it
is essentially tight with Markov’s logarithmic upper bound. Let Fn denote the set of all Boolean
functions on n variables. We say that a function F : {0, 1}n × {0, 1}n → {0, 1} is (ε, s)-secure if for
every circuit C of size at most s,∣∣∣∣ Pr

s∈{0,1}n

[
CF (s,.) = 1

]
− Pr
f∈Fn

[
Cf(.) = 1

]∣∣∣∣ ≤ ε.

Theorem If F : {0, 1}n × {0, 1}n → {0, 1} is (1/4, n2)-secure then any circuit computing F (., .)
contains at least log n−O(1) negation gates.

This lower bound applies for both the adaptive case (PRF) and the non-adaptive one (NAPRF).
The proof constructs a distinguisher (of size O(n2)) that uses an alternating walk on the n-
dimensional hypercube from 0n to the middle layer (and applying Markov’s theorem).
Negation complexity of WPRF. We start by noting that the distinguisher for PRF mentioned
above (both the simple one for monotone functions and the one we constructed for logarithmically
many negations) do not apply for WPRF. Thus, the negation complexity of WPRF remains open.
The first natural question is whether a monotone function can be a WPRF. It is tempting to think
that the PRG lower bound would immediately transfer over to the WPRF setting, since PRG can
be constructed very simply from WPRF However, note that this transformation does not preserve
monotonicity, even if we start with a family where for all k, fk is monotone, since the key k is
one of the inputs to G. Nonetheless, it seems that we can prove that WPRF cannot be monotone,
as a corollary of results about learning classes of monotone functions, and the connection between
WPRF and hardness of learning. In particular, Blum, Burch and Langford [6] show a weak learner
for all monotone boolean functions, which can be shown to imply that for any family {fk} of WPRF,
fk cannot be monotone except for a negligible fraction of the keys.

Towards proving a stronger lower bound on the negation complexity of WPRF, we will explore
whether the weak learning algorithm of [6] can be extended to a weak learning algorithm for the
class of functions computed with t negations. If so, this would imply in particular that any WPRF
will require more than t negations for most values of the key.

In the other direction, we can hope to use hardness of learning results for monotone classes of
functions, in order to prove upper bounds on the negation complexity of WPRF. The only work
(to the best of our knowledge) that addresses this, is the result of Dachman-Soled et al. [8] (joint
with Malkin). In that paper, they show under different cryptographic assumptions that there exists
classes of monotone functions that are hard to learn with accuracy better than 1/2 + 1/poly(n),
essentially matching many weak learning upper bounds. These results can yield monotone functions
with some hardness, but the parameters are not strong enough to obtain WPRF with cryptographic
security. This is expected, as indeed there are no monotone WPRF.

3PI Malkin, together with her student Igor Carboni Oliveira, and with Ilan Orlov and Alon Rosen
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We will try to extend their techniques for classes of functions with some t << log n negations.
One component in their proof uses the result of Berkovitz [4] regarding the monotonicity of the slice
function (on the middle layer of the hypercube). They apply the slice function on an arbitrary PRF
to get a monotone function, and then amplify its hardness using a noise-sensitivity based approach
to hardness amplification, following O’Donnell [23]. A possible direction is to extend Berkovitz
result to apply to several layers close to the middle layer, when some negations are allowed. It
seems that using this approach we will able to construct a WPRF with about (log n)/2 negations.
We then may also be able to use a better (non-monotone) combination function for the hardness
amplification.
Tradeoffs of Negations with Security or Efficiency. So far, we focused on achieving pseu-
dorandom primitives with minimal negation complexity. It is also interesting to study the tradeoffs
between pseudorandmness and monotonicity. Specifically, if we restrict ourselves to circuits with
t negations (even when t is less than the minimum required to achieve exponential security, e.g.
t = 0), how much security (pseudorandmness) can we achieve? Can we prove a tight bound close
to 1/2t distinguishability?

On the other end of the spectrum, can we obtain more efficient constructions by using more
negations than the minimum required? For example, can we achieve better parallel complexity
if we use more than log(n + 1) negations for PRF? We will study this question, trying to obtain
stronger lower bounds than those of Markov on the number of negations in bounded-depth circuits
for PRFs. Such a result may explain the fact that practical candidates for PRF seem to use a large
number of negations (or XORs); is this due to the fact that negations can provide speedup?

2 Addendum: New Results

Since the writing of the above almost two years ago, several relevant new results have been pub-
lished, and I point out the most relevant ones.

Regarding Circuit Complexity of PRF, the recent work of Carmosino et al [7] provides
a learning algorithm with membership queries for AC0[p] (for any prime p ≥ 2, in particular for
AC0[2]). This gives a simpler and direct proof that there is no PRF in this class (although still
leaves open the problems outlined in Section 1.1). I have also heard that there may be a new
result coming up, constructing WPRF from Goldreich’s candidate OWF [12] (one of the directions
we mentioned in Section 1.1), but I have no further details (and in particular do not know what
complexity class the suggested WPRF is in).

Regarding the The Power of Negations in Cryptography, a paper by that name [15] has
studied the problems outlined in Section 1.2 above, providing lower bounds for various primitives
(OWP, PRF, ECC, and others), and leaving several interesting open problems.
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