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Lecture 1

Elementary counting

We will survey elementary counting techniques. No previous back-
ground is assumed. This document is very non-dense and can be
safely skipped if there is basic knowledge in combinatorics.

1.1 Basic counting principles

One way to formally introduce counting principles is through count-
able sets, the cardinality of these sets, operations among sets, and
mappings between these sets. A more advanced treatment would
have used “generative functions and formal power series” – we will
not do this here (neither it is generally necessary).

Counting involves quantitative reasoning where intuition is the
main component. A proof is often times implicit.

There are two basic intuitive principles: (i) principle of sum & (ii)
principle of product.

(i) If there are m ways to perform a task and n ways to perform an un-
related task, then there are in total m+ n ways to perform the combined
task.

(ii) If there are m ways to perform a task and n ways to perform a
second task, then there are m × n ways for the combined task that
performs first one and second the other task.

1



2 LECTURE 1. ELEMENTARY COUNTING

Formally speaking, the principle of sum corresponds to the size of
the set C = A ∪ B, i.e. |A ∪ B|, of two disjoint sets |A| = m, |B| = n;
whereas the principle of product is just the size of the set C = A× B,
i.e. |A× B|, where A, B are not necessarily disjoint.

Before going further think of examples to which each principle ap-
plies.

Example 1 (Number of arrangements). We have 10 distinct slots,
e.g. say that they are numbered. We also have 10 distinct balls. To count
the different arrangements of these balls into the slots we fix an order of the
slots. In the first slot we can put one of the 10 balls. In the second slot we
can put one out of the (remaining) 9 balls. . . . Continuing in the same way
we see that in the last slot we only have one choice. In total, we can arrange
the balls in 10 · 9 · . . . · 2 · 1 = 3628800 different ways.

What if we could not distinguish among slots? That is, sup-
pose that the balls are distinct say they are numbered as 1, 2, . . . , 10,
but the slots are indistinguishable. In this case the arrangement
〈1, 2, 3, 4, 5, 6, 7, 8, 9, 10〉 would be exactly the same as the arrange-
ment 〈2, 3, 1, 4, 5, 6, 7, 8, 9, 10〉. In fact, every arrangement is indistin-
guishable from every other. Therefore, there is only 1 way to arrange
the 10 balls in 10 indistinguishable slots. We would also have had
only one way to arrange them if the balls were indistinguishable but
the slots were distinct; and same thing if both were indistinguishable.

The question of whether the slots and the balls are distinct is spec-
ified in the description of the problem.

What if instead of balls and slots we had the following? How
many 10-digit decimal numbers (we allow the numbers to start with
a zero) exist, when we restrict the numbers to have each digit differ-
ent from the rest? It should be clear that we can model our counting
problem in an equivalent way as the balls-to-slots problem. In an
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integer the position where each digit appears is clearly distinct and
every digit is distinct from every other.

These two simple problems give rise to a general trick applied in
counting arguments.

Say that A and B are two sets. A function f is a mapping from A
onto B, f : A → B; that is, for every x ∈ A there exists one f (x) ∈
B. If there do not exist two distinct x1, x2 ∈ A (i.e. x1 6= x2) such
that f (x1) = f (x2) then the function is called 1− 1 (or injective). If
for every element y ∈ B there exists an x ∈ A, such that f (x) = y
then the function is called onto (or surjective). A function f that it is
both 1− 1 and onto is called 1− 1 correspondence (or bijective). 1− 1
correspondences play a crucial role in counting arguments. Consider
two finite sets A and B. Say that there exists an f : A → B which is
an 1− 1 correspondence. Then |A| = |B|. In other words:

Suppose that we know how to count the elements of a set A.
Say that n = |A|. If we manage to show that there exists an
1− 1 correspondence f between A and B, then at the same time
we have counted the elements of B, |B| = n.

In particular, the set A is the set containing as its elements ar-
rangements of 10 distinct balls to 10 distinct slots. You can real-
ize such an element as a sequence; example: 〈2, 3, 1, 4, 5, 7, 6, 8, 9, 10〉.
The set B consists of 10-digit (with distinct digits) numbers. There-
fore, an 1− 1 correspondence can be the one that for example maps
〈2, 3, 1, 4, 5, 7, 6, 8, 9, 10〉 to the number 2314576890. It is easy to show
that under this mapping: (i) there are no two arrangements (of balls-
to-slots) that are mapped to the same number and (ii) for every 10-
digit number there exists one arrangement (of balls-to-slots) that cor-
responds to it. Therefore, if we have already counted the number of
balls-to-slots arrangements and having established the 1− 1 corre-
spondence, we also know the number of 10-digit numbers.
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The technique is much stronger than its trivial application here.
See Section 1.4 for more examples.

Definition 2. Let n ∈ Z≥0. If n ≥ 1, define n! = n · (n− 1) · . . . · 2 · 1.
Define 0! = 1.

Arrangements of objects

We denote by A(n) the number of arrangements of n distinct objects
(into n distinct positions). Then, it should be clear that A(n) = n ·
(n− 1) · . . . · 2 · 1 = n!. Now, consider the two problems we have just
looked. For both of these problems it is clear that there exists an 1− 1
correspondence between them and the set of all arrangements of 10
distinct objects (whose cardinality is A(10)).

As our last remark, consider again the problem of determining the
number of 10-digit integers where each digit is distinct. We solve
a different problem by not allowing integers to start with 0. How
many integers exist under this modification? The answer is A(10)−
A(9) = 10!− 9! = (10− 1)9! = 9 · 9!. Why?

Apply the principle of sum.

# integers starting with zero + # integers not starting with zero
= # integers

therefore,

# integers not starting with zero
= # integers - # integers starting with zero

Alternatively, we could have argued as follows: for the most sig-
nificant digit we have 9 available choices (excluding 0). Then, for
the second most significant digit we have 9 choices (we exclude the
one we used for the first - but now we can use zero). For the third
most significant digit we have 8 choices, etc. Therefore we have
9 · 9 · 8 · 7 · . . . · 2 · 1 = 9 · 9!.
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What is the difference between the above two different (valid) ar-
guments for the same enumeration problem? In the first argument
we use the fact that we already know how to count arrangements of
objects, but since the problem is not a mere arrangement problem we
have to exclude some cases (which again we count using A(n)). In
the second argument we start from scratch.

1.2 Permutations and Combinations without repetition

Permutations

Let n, k ∈ Z≥0, n ≥ k. We denote by P(n, k) the different ways into
which we can arrange k objects by choosing from a set of n objects
(without reusing objects). Fix an order on k positions. For the first
position we have n choices, for the second we have n− 1 . . . for the
last we have (n− k + 1). Therefore, P(n, k) = n · (n− 1) · . . . · (n−
k + 1) = n!

(n−k)! .

Combinations

Basics

Let us solve a similar problem, where the order of objects does not
count. That is, given a set of n distinct objects we want to count how
many different subsets of k objects we can construct. We denote by
C(n, k) or (n

k) the possible distinct combinations of k objects chosen
from a set of n (distinct) objects. Using the principle of product we
have:

C(n, k) · (# arrangements of k objects) = P(n, k)

That is, the number of permutations P(n, k) equals to the number
of ways of first choosing sets of k objects (without caring about their
order-arrangement) and then arranging (i.e. introducing ordering)
the objects of each set in all possible ways.
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Therefore, C(n, k) ≡ (n
k) =

P(n,k)
A(k) = n

k!(n−k)! .
One immediate property of combinations (n

k) (read as “n choose
k”) is that (n

k) = ( n
n−k).

Binomial Coefficients

One application of combinations is to determine coefficients of the
polynomial (s + t)n (actually, the reason for initially introducing
combinations was these coefficients). Binomial Coefficients are the
constants of the terms of the polynomial (s + t)n (this is a polyno-
mial on two variables s and t).

We first consider a simpler problem. Consider the polynomial (1+
x)n say over the field of reals. Just for fun, let us expand (1 + x)n for
some small values of n. For n = 2 we have:

(1 + x)2 = (1 + x)(1 + x) = 1 + x + x + x2 = 1 + 2x + x2

and for n = 3:

(1 + x)3 = (1 + x)(1 + x)2 = (1 + x)(1 + x + x + x2)

= 1 + x + x + x2 + x + x2 + x2 + x3 = 1 + 3x + 3x2 + x3

In general we have (1 + x)n = c0 + c1x + c2x2 + . . . + cnxn and
we wish to determine the values of the constants c0, c1, c2, . . . , cn.
One (non-trivial) thing we could try is to guess the value of ci and
then prove it by induction. We will follow an alternative, combi-
natorial argument. We observe that in (1 + x)k the term xk appears
only once. Give a distinct name to each term (1 + x) of the product
(1 + x)1(1 + x)2 . . . (1 + x)n︸ ︷︷ ︸

(1+x) n times

. We observe that by the distributivity of

multiplication if we write (1 + x)n = (1 + x)n−k(1 + x)k and we fix
what we mean by (1 + x)n−k and by (1 + x)k, there will be only one
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xk due to the fixed (1 + x)k. This fixed xk will eventually appear into
the expansion if we successively apply the distributive law. So the
problem in determining ck reduces in counting how many different
xk we can have as a result of the expansion of (1+ x)n. That is, in how
many different ways we can write (1+ x)k. We have considered each
parenthesis (1 + x) of the product (1 + x)n as distinct. Therefore, we
have (n

k) ways of choosing sets of different parenthesis (1 + x)k.

(1 + x)n =
n

∑
k=0

(
n
k

)
xk

Substituting x = s
t we get the following:

(s + t)n =
n

∑
k=0

(
n
k

)
sktn−k

Properties of Binomial Coefficients

Here are some basic properties of the binomial coefficients:

1. (n
r) = ( n

n−r)

2. (n
r) = (n−1

r ) + (n−1
r−1)

3. (n
r) =

n
r (

n−1
r−1)

4. ∑n
k=0 (

r+k
k ) = (r+n+1

n )

5. (n
m)(

m
r ) = (n

r)(
n−r
m−r)

6. ∑n
k=0 (

r
k)(

s
n−k) = (r+s

n )

Property 2 yields a representation called Pascal’s triangle. Consider
an arrangement of binomial coefficients on a triangle. On one vertex
put (0

0). Then consider (1
0) and (1

1) and put them below (0
0) and align

them to the left and to the right of (0
0). In the same fashion consider
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(2
0), (

2
1) and (2

2) and align them on the third row. In this way we get
the Pascal’s triangle, part of which is depicted below.

(0
0)

(1
0) (1

1)
(2

0) (2
1) (2

2)
(3

0) (3
1) (3

2) (3
3)

By property 2 a binomial coefficient is the sum of the two binomial
coefficients in the triangle that are just above and just to the left and
to the right.

Apart from a proof based on algebraic manipulations the above
properties (1-6) can be shown using combinatorial arguments (as al-
most every argument presented in this document). For example,
consider property 3. Algebraically the proof is trivial: n

r (
n−1
r−1) =

n(n−1)!
r(r−1)!(n−r)! = (n

r). Here is a combinatorial proof: In order to choose
r objects from n, it suffices to choose 1 and then choose r− 1 among
(the remaining) n − 1. For the choice of the first object we have n
choices and for the remaining we have (n−1

r−1). Therefore, in total we
have n(n−1

r−1). But in this way we distinguish between the first cho-
sen object and the rest (i.e. this way an order is imposed). Hence,
n(n−1

r−1) = (n
r)r. That is, n(n−1

r−1) equals to the number of ways of choos-
ing (without an order) r objects from n and then choosing one of
these r objects as the “special” object. Hence, n

r (
n−1
r−1) = (n

r).

Exercise 3. Give a combinatorial proof for property 5.

An application of the (Binomial) coefficients of the polynomial (s + t)n

Say that a and b are constants. We wish to show that (x + a)b =
Θ(xb). We have determined that (x + a)b = ∑b

k=0 (
b
k)xkab−k. Since a

and b are constants, for every k the factor (b
k)ab−k is also a constant.

Therefore, (x + a)b = Θ(xb). (if you were asked to show that (x +
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a)b = Θ(xb), as part of one of your assignments or tests you should
have given the full proof).

1.3 Arrangements of objects containing indistinguishable objects

Consider n objects and say that there are r groups each containing
identical (indistinguishable) objects. Say that the i-th group consists
of qi identical elements. Say that the number of distinct arrangements
of the n objects are N. We apply the following combinatorial trick.
Since we know how to count arrangements of distinct objects we will
use this fact: For the moment modify the elements (for example, by
adding a distinct subscript) within each group so as to make them
distinct. Note that N (still)counts the objects as they initially are (i.e.
with groups of indistinguishable objects). Arrange the objects of the
first group. Then, arrange the objects of the second group etc. There-
fore, we have Nq1!q2! . . . qr! = n!. That is, the number of arrange-
ments of object consisting of r groups of identical objects is

n!
q1!q2! . . . qr!

For the special case where there are only two groups having q1

and q2 identical elements (i.e. n = q1 + q2), the number of different
arrangements is:

n!
q1!q2!

=
n!

q1!(n− q1)!
=

(
n
q1

)
=

(
n
q2

)
1.4 Permutations and Combinations with repetitions

Permutations with repetitions

Suppose that we have n distinct objects but unlike the previous cases,
now we allow (infinitely many) repetitions of each object. We have n
objects and we count the number of different ways we can arrange k
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of them when repetition is allowed. Fix an order on k slots. For the
first slot we have n choices. For the second we also have n choices
(since we allow repetition of objects) etc. Therefore, there are nk dif-
ferent permutations with repetitions.

Application of permutations with repetitions

Given n distinct objects we wish to count all different subsets (in-
cluding the empty one) we can construct out of these n objects. That
is, we want to determine the value of ∑n

k=0 (
n
k). One easy way to do so

is to associate (i.e. establish a 1− 1 correspondence) between n-digit
binary numbers (we allow the binary numbers to start with zero)
and subsets of objects. Fix an ordering on the n objects. An object
can either be included in a subset or not. For an arbitrary subset, we
associate with every chosen object an 1 and with every non-chosen
object a 0. For example, consider the 3 objects {a, b, c}. Fix an or-
dering, say 〈a, b, c〉. Then, the binary number 011 corresponds to the
subset {b, c}. Note that for every object there is a unique binary num-
ber that corresponds to it. And, for every subset there exists a binary
number which corresponds to it. That is, the mapping is an 1 − 1
correspondence. Now, in order to determine ∑n

k=0 (
n
k) it suffices to

determine the number of distinct n-digit binary numbers. This is just
the number of permutations with repetition of two digits (0 and 1)
into n positions. That is,

n

∑
k=0

(
n
k

)
= 2n

Combinations with repetitions

Counting the number of combinations (i.e. the order does not count)
with repetition is more trickier. In order to count the different sub-
sets of size (cardinality) k from a set of n objects when repetition is
allowed, this calls for the counting trick where we establish an 1− 1
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correspondence between a set of things we know how to count and
the target set of things we want to count. We give some hints for the
general proof through an illustrative example.

Suppose that we have 4 objects say a, b, c, d and we want to count
how many combinations with repetition we have resulting sets of
5 objects. Since we allow repetition we formally talk about multi-
sets of 5 objects. A multiset is a set where an element appears to-
gether with its multiplicity (or equivalently may appear more than
once). One possible choice is the multiset {a, b, b, c, d} and another
is {a, b, a, d, c}. In order to establish the “1-1” correspondence we in-
troduce some ordering into the problem. Note that the way in which
we will introduce this ordering does not hurt generality (i.e. the “un-
ordered nature” of the multiset). Fix an ordering on the five objects,
say a � b � c � d � e. We list the resulting multisets according to
this order. For example:

{a, b, b, c, d}
{a, a, b, c, d}
{a, a, a, d, d}
{b, b, b, b, b}
{a, a, a, a, a}

...

Our goal is to establish an 1 − 1 correspondence with a set that
we know how to count. We use 4− 1 = 3 vertical bars to somehow
designate the begin and the end of each group of identical objects.
For example, a|bb|c|d. The first vertical bar corresponds to objects
a that are on the left of this bar. Between the first and the second
vertical bar we have objects b. Between the second and the third
vertical bar are objects c. And to the right of the third vertical bar we
have objects d. Note that the introduced semantics for the vertical
bars allows us to use only one symbol to denote objects. That is, if
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we write x|xx|x|x this uniquely corresponds to {a, b, b, c, d}. Hence,
we have:

{a, b, b, c, d} x|xx|x|x
{a, a, b, c, d} xx|x|x|x
{a, a, a, d, d} xxx|||xx
{b, b, b, b, b} |xxxxx||
{a, a, a, a, a} xxxxx|||

... ...

It is also easy to show that every arrangement of 5 x’s and 3 ver-
tical bars corresponds to a multiset. Therefore, we have established
an 1− 1 correspondence from the multisets we want to count to the
arrangements of 5 + (4− 1) = 8 objects, where we have one group
of 5 identical objects and one group of 4− 1 = 3 identical objects. As
we have already seen the number of these different arrangements is

8!
5!3! .

It is a good exercise to attempt to count the above number of com-
binations with repetitions starting from basic principles (i.e. the prin-
ciples of sum and product). The tempted reader will shortly realize
that one could easily get into trouble.

It is worth stressing out that: (i) we may wish to establish a 1− 1
correspondence between the elements of the set we want to count
(here an element is a multiset of size 4) and the elements of a set we
know how to count (here an element is a sequence of 5 x’s and 3 ver-
tical bars) and (ii) the elements of the set we already know how to
count might have quite different structure than the elements of the
set we want to count. In the above example, a multiset does not have
an order, where the sequences (arrangements) do; the multiset con-
sisted of 5 elements where the arrangement of 8; the multiset consists
of 4 different elements where the arrangement of 2.
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Now, it is not hard to give a general proof of the following fact: The
number of combinations where we choose with repetition k objects
from n distinct objects is (

n + k− 1
k

)
Exercise 4. Show that the number of combinations where we choose with
repetition k objects from n distinct objects is (n+k−1

k ).

Applications of combinations with repetition

Example 5. We want to count the number of calls to DO-SOMETHING

(line 7).

NOTHING-SPECIAL[n]
1 for i← 1 to n
2 do
3 for j← 1 to i
4 do
5 for k← 1 to j
6 do
7 DO-SOMETHING[i,j,k]

It seems cumbersome to work from basic principles. We observe that if
we try to count ordered permutations corresponding to (i, j, k) we would
have run into the same troubles as if we were working from basic principles.
The reason is that (5, 3, 2) is valid, where (5, 10, 2) is not (j can never get a
higher value than i). Therefore, working in this way it seems that we have
to exclude cases with “complex” interactions. It appears that a different
“explicitly unordered” approach yields a straightforward answer. If we con-
sider (multi)sets of three elements instead of permutations and we agree on
the convention that the largest element corresponds to i, the second largest
to j and the smallest to k then we have resolved the problem. Since i, j, k
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may take the same value then we are talking about combinations with repe-
titions. Note that counting all the three element multisets which are subsets
of {1, 2, . . . , n} we have every possible assignment of values for i, j and k.
Therefore, the number of calls to DO-SOMETHING is (n+3−1

3 ) = (n+2
3 ).

Example 6. The following problem is from a well-studied type of problems
known as balls-to-bins. Consider n distinct bins and r indistinguishable
balls. What is the number of different placements of balls into bins? Note
that a bin might be empty. We realize the problem as assigning bins to
balls. We assign the bins as follows: (i) choose r bins, (ii) every bin can be
chosen more than once and (iii) the order does not count since the balls are
indistinguishable. Therefore, the number of placements is (n+r−1

r ).
Before reading further convince yourself about the validity of (i), (ii), and

especially for (iii).

Example 7. Suppose that we want to count the number of non-negative
integer solutions to the following equation:

x1 + x2 + . . . + xn = r, n, r ∈ Z≥0

This problem is equivalent to the previous one, since we may consider the
balls to correspond to 1s and the bins to xi’s. Therefore, the number of
integer solutions is (n+r−1

r ).

Up to now it should be clear that the following are equivalent.

• The combinations with repetitions of r objects from n objects.

• The number of placements of r indistinguishable balls into n dis-
tinct bins.

• The number of non-negative integer solutions of x1 + x2 + . . . +
xn = r, n, r ∈ Z≥0
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1.5 Balls to bins

It is true that many counting problems can be modeled as a balls-to-
bins problem. Here is a table giving the number of ways for placing
balls into bins for some basic balls-to-bins problems.

Balls-to-Bins Problem # of placements when we allow
empty bins

n distinct bins
r distinct balls nr

n distinct bins
r distinct balls (n+r−1)!

(n−1)!
it also counts the order in which

we place balls into bins

n distinct bins
r indistinguishable balls (n+r−1

r )

Exercise 8. It is a good exercise to prove (using combinatorial arguments)
each of the above.
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1.6 Principle of Inclusion-Exclusion

The principle

Often in counting problems we want to count the total number of
distinct elements of two or more sets of objects. Say that we have two
finite sets A and B. We want to count the number of elements that
are in the union of the two sets. Straightforwardly this equals to

|A ∪ B| = |A|+ |B| − |A ∩ B| (1.1)

(that is the total number of distinct elements of A and B equals to
the sum of their cardinalities minus the number of their common
elements - i.e. the cardinality of their intersection.)

Remark 9. One may wonder why is it simpler to compute the number of
elements in A ∪ B by the above formula. Of course this is not always the
case. But, in some cases we can model some counting problems such that
we know (or we know how to compute) |A|, |B| and we also do know (or
we know how to compute) how to count their common elements. As a rule
of thumb consider the sets A and B to correspond to the “bad cases” for a
counting problem. Talking a bit abstractly consider the following example:
Say that we have a set S and we have two (“bad”) properties on the elements
of S. Our goal is to count the number of elements of S that do not satisfy any
of the two (“bad”) properties. Suppose that we are given |S| = n and the
two properties such that P1 elements of S satisfy the first and P2 satisfy the
second and that P elements of S satisfy both. Then, the number of elements
that does not satisfy any of the two properties is n− (P1 + P2− P).

What if we have more than two sets. This case gives rise to more
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complicated interactions. For example

|A ∪ B ∪ C| = |(A ∪ B) ∪ C| = |A ∪ B|+ |C| − |(A ∪ B) ∩ C|
(it is easy to verify that ∩ is distributive for ∪ and vice-versa)

= |A ∪ B|+ |C| − |(A ∩ C) ∪ (A ∩ B)|
= |A|+ |B|+ |A ∩ B|+ |C| − |(A ∩ C) ∪ (A ∩ B)|
= |A|+ |B|+ |A ∩ B|
+ |C| −

(
|(A ∩ C)|+ |(A ∩ B)| − |(A ∩ C) ∩ (A ∩ B)|

)
= |A|+ |B|+ |C|+ |A ∩ B|
− |(A ∩ C)| − |(A ∩ B)|+ |(A ∩ B ∩ C)|

We derived the above result by repeatedly applying equation 1.1.
Therefore, for n sets A1, A2, . . . , An it is easy to show by induction
that:∣∣ n⋃

i=1

Ai
∣∣ = n

∑
i=1
|Ai|− ∑

1≤i1<i2≤n
|Ai1 ∩ Ai2|+ ∑

1≤i1<i2<i3≤n
|Ai1 ∩ Ai2 ∩ Ai3|

− . . .+(−1)n
∣∣ n⋂

i=1

Ai
∣∣

You should try to give a combinatorial proof for the above.
Up to now we were discussing problems where we wanted to

count in the exact sense. It is quite often the case that an upper or
lower bound would be sufficient for a specific problem. It is also
the case that for most problems it is hard to compute the number
of elements in the intersections of sets. For example, say that after
modeling our counting problem we have 4 sets A1, A2, A3, A4. Per-
haps due to the nature of the problem it may be the case that it is
easy to compute the cardinality of the intersection of any two sets
(|Ai ∩ Aj|, i 6= j); but on the other hand it gets quite non-trivial to
compute the intersection of three or four sets.
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A place where the following inequalities might appear helpful is:
(i) an upper or lower bound is sufficient and (ii) we may wish to
increase m up to the point we achieve the desired accuracy.

It is easy to show by induction that the following inequalities,
known as Boole-Bonferroni inequalities, hold.

For m ≤ n odd:∣∣ n⋃
i=1

Ai
∣∣ ≤ n

∑
i=1
|Ai|− ∑

1≤i1<i2≤n
|Ai1 ∩ Ai2|

+ ∑
1≤i1<i2<i3≤n

|Ai1 ∩ Ai2 ∩ Ai3|− . . .− ∑
1≤i1<...<im≤n

∣∣ m⋂
k=1

Aik

∣∣
For m ≤ n even:∣∣ n⋃

i=1

Ai
∣∣ ≥ n

∑
i=1
|Ai|− ∑

1≤i1<i2≤n
|Ai1 ∩ Ai2|

+ ∑
1≤i1<i2<i3≤n

|Ai1 ∩ Ai2 ∩ Ai3|− . . . + ∑
1≤i1<...<im≤n

∣∣ m⋂
k=1

Aik

∣∣
Applications of the Principle of Inclusion-Exclusion

Yet another balls-to-bins problem

We wish to count the number of placements of 5 distinct balls to 4
distinct bins with the constraint that no bin is empty. Here is how
we apply the inclusion-exclusion principle. We already know that
there are nr ways (Section 1.5) to place r balls into n bins, when we
allow empty bins. We wish to exclude the number of placements
which have (at least one) empty bin. Consider the set A of all place-
ments where empty bins are allowed. Choose your favorite way of
encoding a placement i.e. the elements of A 1. Say that Āi is the set

1Perhaps you want to represent each placement as a set {(balli , binj)|place ball i into bin j}. That is, the set A has as its
elements sets of the previous form, that correspond to placements of the r balls into n bins.
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containing all the placements where the i-th bin is empty. Therefore,
we want to count |A| − |Ā1 ∪ Ā2 ∪ Ā3 ∪ Ā4|.

Remark 10. To approach this problem from scratch (basic principles) we
have to deal with the complex correlation between cases. That is, consider
the case where the first bin is empty and the others not; and the case where
the last two bins are empty and the first not; and so on. In general, you
carefully consider all these complex interactions that arise in this counting
problem. The Inclusion-Exclusion principle is nothing more than a system-
atic way of revealing all these interactions. The set (Ā1 ∪ Ā2 ∪ Ā3 ∪ Ā4) is
nothing else but the set containing all placements where at least one of these
bins is empty. Recall that the union ∪ between sets is defined as a logical
OR of containing an element either from one or from the other set. Note that
this OR is exactly what we want. Pay attention to the fact that a placement
which is an element in Ā1 might as well be an element in Ā2.

|Ā1 ∪ Ā2 ∪ Ā3 ∪ Ā4| =
(
|Ā1|+ |Ā2|+ |Ā3|+ |Ā4|

)
−(

|Ā1 ∩ Ā2|+ |Ā1 ∩ Ā3|+ |Ā1 ∩ Ā4|+ |Ā2 ∩ Ā3|+ |Ā2 ∩ Ā4|+ |Ā3 ∩ Ā4|
)
+(

|Ā1 ∩ Ā2 ∩ Ā3|+ |Ā1 ∩ Ā2 ∩ Ā4|+ |Ā2 ∩ Ā3 ∩ Ā4|+ |Ā1 ∩ Ā3 ∩ Ā4|
)
+(

|Ā1 ∩ Ā2 ∩ Ā3 ∩ Ā4|
)

How many placements exist such that the first bin is empty? These
are just the number of placements of the 5 balls into the remaining
3 bins; i.e. |Ā1| = 35. Similarly, |Āi| = 35, 1 ≤ i ≤ 4. How many
placements exist such that both the first and the second bin is empty?
These are just the number of placements of the 5 balls into the re-
maining 2 bins. Therefore, |Ā1 ∩ Ā2| = 25. Obviously, |Āi ∩ Āj| = 25

for every 1 ≤ i < j ≤ 4. Similarly, we have that |Āi ∩ Āj ∩ Āk| = 15,
for every 1 ≤ i < j < k ≤ 4. Also |Ā1 ∩ Ā2 ∩ Ā3 ∩ Ā4| = 0 (since the
5 balls must be placed somewhere).
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Here is an observation regarding the equation in the Inclusion-
Exclusion principle. How many terms |Āi| exist? There are (4

1) = 4.
How many terms |Āi ∩ Āj| (where i 6= j) exist? There are exactly
(4

2) = 6. How many terms |Āi ∩ Āj ∩ Āk|? There are (4
3) = 4. And

there is (4
4) = 1 term |Ā1 ∩ Ā2 ∩ Ā3 ∩ Ā4|.

Therefore, |Ā1∪ Ā2∪ Ā3∪ Ā4| = (4
1)3

5− (4
2)2

5 +(4
3)1

5− (4
4)0 = 780.

Hence, the number of placements we were asked to compute is

|A| − |Ā1 ∪ Ā2 ∪ Ā3 ∪ Ā4| = 45− 780 = 240

Exercise 11. Generalize the above result when the number of balls is r and
the number of bins n.

Exercise 12. Suppose that we have 20 bins and 30 balls. Instead of count-
ing the exact number of placements (with the constraint that each bin con-
tains at least one ball) compute an upper and lower bound, using Boole-
Bonferroni inequalities. Compute these bounds with two different accura-
cies. The lower bound for 2 and 4 terms and the upper bound for 1 and 3
terms.

Exercise 13. Count the number of arrangements of the digits 0, 1, . . . , 9
exist, under the constraint that the first digit is greater than 1 and the last
digit is less than 8?

Euler’s φ function

We are going to determine a formula for a function known as Euler’s
φ function. This function plays an important role in many places – if
you took a course in Algorithms you should have seen it in the anal-
ysis of the Miller-Rabin primality testing algorithm. First we need
some definitions.

Definition 14.

• Let p, n ∈ Z, p 6= 0. We say that p divides n, p|n, or that p is a
divisor of n iff there exists a natural number k 6= 0 such that n = kp.
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• We say that p ∈ Z, p > 1 is a prime number if its only divisors are 1
and p. Else, p is composite.

• Let a, b be two integers not both zero. We denote by gcd(a, b) the
greatest integer among the common divisors of a and b.

• We say that two integers a and b are relatively prime (or coprime) iff
their greatest common divisor is the unit, gcd(a, b) = 1.

The fundamental theorem of number theory is the Unique Factor-
ization into powers of primes.

Theorem 15 (Unique Factorization). A composite number n ∈ Z+ can
be uniquely written as a product of powers of prime numbers p1, p2 . . . , pi,
n = pe1

1 pe2
2 . . . pei

i , where ei ∈ Z+.

Definition 16. For a given positive integer n, the Euler’s φ function de-
notes the number of positive integers m < n such that n and m are relatively
prime.

For example, φ(3) = 2, φ(6) = 2 and φ(7) = 7− 1 = 6. Clearly,
when p is prime we have φ(p) = p − 1. Our goal is to show for
n ∈ Z+:

φ(n) = n ∏
p|n

(
1− 1

p
)

where the product runs over all prime divisors of n.
As in the previous balls-to-bins example, we want to determine

the “bad cases”. Why? We want to express φ(n) in terms of prime
divisors of n. It seems quite intuitive that the “bad cases” are the
ones in which (i) we have this correlation and (ii) more importantly
we do know how to compute the number of elements in each “bad
case”.
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By the Unique Factorization theorem let n = pe1
1 pe2

2 . . . pei
i . It is clear

that if m < n is not relatively prime to n then there exist not all zero
e′1, e′2 . . . e′i where 0 ≤ e′k ≤ ek, k = 1, . . . , i such that m = pe′1

1 pe′2
2 . . . pe′i

i .
Say that Āl is the set of all integers a which are less than or equal to

n such that pl|a. Therefore, the set
⋃i

l=1 Āl contains all integers that
are less than or equal to n and they are not relatively prime to n. If
A = {1, 2, . . . , n}, then we have that φ(n) = |A| − |⋃i

l=1 Āl| = n−
|⋃i

l=1 Āl|. Thus, the problem reduces to the computation of |⋃i
l=1 Āl|.

By the definition of Āk, we have that |Āk| = n
pk

. For the same rea-
son |Āk ∩ Āj| = n

pk pj
, for every 1 ≤ k < j ≤ n. Similarly, |Āk1 ∩ Āk1 ∩

. . . ∩ Ākv | = n
pk1

pk2
...pkv

, for every 1 ≤ k1 < k2 < . . . < kv ≤ n. In the

inclusion-exclusion formula we have i terms |Āk|, ( i
2) terms |Āk ∩ Āj|,

..., 1 term |Ā1 ∩ Ā1 ∩ . . . ∩ Āi|. Now it is rather easy to show (by in-
duction on i) that if we factorize n −

(
∑i

k=1 |Āk|−∑1≤k1<k2≤i |Āk1 ∩
Āk2|+∑1≤k1<k2<k3≤i |Āk1 ∩ Āk2 ∩ Āk3|− . . .+(−1)i

∣∣⋂i
k=1 Āk

∣∣) we get
n ∏i

i=1
(
1− 1

pi

)
.

Therefore, φ(n) = n ∏p|n
(
1− 1

p

)
.

Exercise 17. How many are the positive divisors of 2100?
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