
Cryptography: An Introduction

(3rd Edition)

Nigel Smart

CHAPTER 1

Modular Arithmetic, Groups, Finite Fields and Probability

Chapter Goals

• To understand modular arithmetic.
• To become acquainted with groups and finite fields.
• To learn about basic techniques such as Euclid’s algorithm, the Chinese Remainder The-

orem and Legendre symbols.
• To recap on basic ideas from probability theory.

1. Modular Arithmetic

Much of this book will be spent looking at the applications of modular arithmetic, since it is
fundamental to modern cryptography and public key cryptosystems in particular. Hence, in this
chapter we introduce the basic concepts and techniques we shall require.

The idea of modular arithmetic is essentially very simple and is identical to the ‘clock arithmetic’
you learn in school. For example, converting between the 24-hour and the 12-hour clock systems
is easy. One takes the value in the 24-hour clock system and reduces the hour by 12. For example
13 : 00 in the 24-hour clock system is one o’clock in the 12-hour clock system, since 13 modulo 12
is equal to one.

More formally, we fix a positive integer N which we call the modulus. For two integers a and
b we write a = b (mod N) if N divides b − a, and we say that a and b are congruent modulo N .
Often we are lazy and just write a = b, if it is clear we are working modulo N .

We can also consider (mod N) as a postfix operator on an integer which returns the smallest
non-negative value equal to the argument modulo N . For example

18 (mod 7) = 4,

−18 (mod 7) = 3.

The modulo operator is like the C operator %, except that in this book we usually take represen-
tatives which are non-negative. For example in C or Java we have,
(-3)%2 = -1

whilst we shall assume that (−3) (mod 2) = 1.
For convenience we define the set:

Z/NZ = {0, . . . , N − 1}
which is the set of remainders modulo N . This is the set of values produced by the postfix operator
(mod N). Note, some authors use the alternative notation of ZN for the set Z/NZ, however, in this
book we shall stick to Z/NZ.

The set Z/NZ has two basic operations on it, namely addition and multiplication. These are
defined in the obvious ways, for example:

(11 + 13) (mod 16) = 24 (mod 16) = 8

3

4 1. MODULAR ARITHMETIC, GROUPS, FINITE FIELDS AND PROBABILITY

since 24 = 1 · 16 + 8 and

(11 · 13) (mod 16) = 143 (mod 16) = 15

since 143 = 8 · 16 + 15.

1.1. Groups and Rings. Addition and multiplication modulo N work almost the same as
arithmetic over the reals or the integers. In particular we have the following properties:

(1) Addition is closed :
∀a, b ∈ Z/NZ : a + b ∈ Z/NZ.

(2) Addition is associative :

∀a, b, c ∈ Z/NZ : (a + b) + c = a + (b + c).

(3) 0 is an additive identity :

∀a ∈ Z/NZ : a + 0 = 0 + a = a.

(4) The additive inverse always exists :

∀a ∈ Z/NZ : a + (N − a) = (N − a) + a = 0.

(5) Addition is commutative :

∀a, b ∈ Z/NZ : a + b = b + a.

(6) Multiplication is closed :

∀a, b ∈ Z/NZ : a · b ∈ Z/NZ.

(7) Multiplication is associative :

∀a, b, c ∈ Z/NZ : (a · b) · c = a · (b · c).
(8) 1 is a multiplicative identity :

∀a ∈ Z/NZ : a · 1 = 1 · a = a.

(9) Multiplication and addition satisfy the distributive law :

∀a, b, c ∈ Z/NZ : (a + b) · c = a · c + b · c.
(10) Multiplication is commutative :

∀a, b ∈ Z/NZ : a · b = b · a.

Many of the sets we will encounter have a number of these properties, so we give special names to
these sets as a shorthand.

Definition 1.1 (Groups). A group is a set with an operation which
• is closed,
• has an identity,
• is associative,
• every element has an inverse.

A group which is commutative is often called abelian. Almost all groups that one meets in
cryptography are abelian, since the commutative property is what makes them cryptographically
interesting. Hence, any set with properties 1, 2, 3 and 4 above is called a group, whilst a set with
properties 1, 2, 3, 4 and 5 is called an abelian group.

Standard examples of groups which one meets all the time at high school are:
• The integer, real or complex numbers under addition. Here the identity is 0 and the inverse

of x is −x, since x + (−x) = 0.
• The non-zero rational, real or complex numbers under multiplication. Here the identity is

1 and the inverse of x is x−1, since x · x−1 = 1.

1. MODULAR ARITHMETIC 5

A group is called multiplicative if we tend to write its group operation in the same way as one does
for multiplication, i.e.

f = g · h and g5 = g · g · g · g · g.

We use the notation (G, ·) in this case if there is some ambiguity as to which operation on G we
are considering. A group is called additive if we tend to write its group operation in the same way
as one does for addition, i.e.

f = g + h and 5 · g = g + g + g + g + g.

In this case we use the notation (G,+) if there is some ambiguity. An abelian group is called cyclic
if there is a special element, called the generator, from which every other element can be obtained
either by repeated application of the group operation, or by the use of the inverse operation. For
example, in the integers under addition every positive integer can be obtained by repeated addition
of 1 to itself, e.g. 7 can be expressed by

7 = 1 + 1 + 1 + 1 + 1 + 1 + 1.

Every negative integer can be obtained from a positive integer by application of the additive inverse
operator, x→ −x. Hence, we have that 1 is a generator of the integers under addition.

If g is a generator of the cyclic group G we often write G = 〈g〉. If G is multiplicative then
every element h of G can be written as

h = gx,

whilst if G is additive then every element h of G can be written as

h = x · g,

where x in both cases is some integer called the discrete logarithm of h to the base g.

As well as groups we also define the concept of a ring.

Definition 1.2 (Rings). A ring is a set with two operations, usually denoted by + and · for
addition and multiplication, which satisfies properties 1 to 9 above. We can denote a ring and its
two operations by the triple (R, ·,+).

If it also happens that multiplication is commutative we say that the ring is commutative.

This may seem complicated but it sums up the type of sets one deals with all the time, for
example the infinite commutative rings of integers, real or complex numbers. In fact in cryptography
things are even easier since we only need to consider finite rings, like the commutative ring of integers
modulo N , Z/NZ.

1.2. Euler’s φ Function. In modular arithmetic it will be important to know when, given a
and b, the equation

a · x = b (mod N)
has a solution. For example there is exactly one solution to the equation

7x = 3 (mod 143),

but there are no solutions to the equation

11x = 3 (mod 143),

however there are 11 solutions to the equation

11x = 22 (mod 143).

Luckily, it is very easy to test when such an equation has one, many or no solutions. We simply
compute the greatest common divisor, or gcd, of a and N , i.e. gcd(a,N).

6 1. MODULAR ARITHMETIC, GROUPS, FINITE FIELDS AND PROBABILITY

• If gcd(a,N) = 1 then there is exactly one solution. We find the value c such that a · c = 1
(mod N) and then we compute x = b · c (mod N).

• If g = gcd(a,N) �= 1 and gcd(a,N) divides b then there are g solutions. Here we divide
the whole equation by g to produce the equation

a′ · x′ = b′ (mod N ′),

where a′ = a/g, b′ = b/g and N ′ = N/g. If x′ is a solution to the above equation then

x = x′ + i ·N ′

for 0 ≤ i < g is a solution to the original one.
• Otherwise there are no solutions.

The case where gcd(a,N) = 1 is so important we have a special name for it, we say a and N are
relatively prime or coprime.

The number of integers in Z/NZ which are relatively prime to N is given by the Euler φ
function, φ(N). Given the prime factorization of N it is easy to compute the value of φ(N). If N
has the prime factorization

N =
n∏

i=1

pei
i

then

φ(N) =
n∏

i=1

pei−1
i (pi − 1).

Note, the last statement it is very important for cryptography: Given the factorization of N it is
easy to compute the value of φ(N). The most important cases for the value of φ(N) in cryptography
are:

(1) If p is prime then
φ(p) = p− 1.

(2) If p and q are both prime and p �= q then

φ(p · q) = (p− 1)(q − 1).

1.3. Multiplicative Inverse Modulo N . We have just seen that when we wish to solve
equations of the form

ax = b (mod N)
we reduce to the question of examining when an integer a modulo N has a multiplicative inverse,
i.e. whether there is a number c such that

ac = ca = 1 (mod N).

Such a value of c is often written a−1. Clearly a−1 is the solution to the equation

ax = 1 (mod N).

Hence, the inverse of a only exists when a and N are coprime, i.e. gcd(a,N) = 1. Of particular
interest is when N is a prime p, since then for all non-zero values of a ∈ Z/pZ we always obtain a
unique solution to

ax = 1 (mod p).
Hence, if p is a prime then every non-zero element in Z/pZ has a multiplicative inverse. A ring like
Z/pZ with this property is called a field.

Definition 1.3 (Fields). A field is a set with two operations (G, ·,+) such that
• (G,+) is an abelian group with identity denoted by 0,
• (G \ {0}, ·) is an abelian group,
• (G, ·,+) satisfies the distributive law.

2. FINITE FIELDS 7

Hence, a field is a commutative ring for which every non-zero element has a multiplicative
inverse. You have met fields before, for example consider the infinite fields of rational, real or
complex numbers.

We define the set of all invertible elements in Z/NZ by

(Z/NZ)∗ = {x ∈ Z/NZ : gcd(x,N) = 1}
The ∗ in A∗ for any ring A refers to the largest subset of A which forms a group under multiplication.
Hence, the set (Z/NZ)∗ is a group with respect to multiplication and it has size φ(N).

In the special case when N is a prime p we have

(Z/pZ)∗ = {1, . . . , p− 1}
since every non-zero element of Z/pZ is coprime to p. For an arbitrary field F the set F ∗ is equal
to the set F \ {0}. To ease notation, for this very important case, define

Fp = Z/pZ = {0, . . . , p− 1}
and

F
∗
p = (Z/pZ)∗ = {1, . . . , p− 1}.

The set Fp is a finite field of characteristic p. In the next section we shall discuss a more general
type of finite field, but for now recall the important point that the integers modulo N are only a
field when N is a prime.

We end this section with the most important theorem in elementary group theory.

Theorem 1.4 (Lagrange’s Theorem). If (G, ·) is a group of order (size) n = #G then for all
a ∈ G we have an = 1.

So if x ∈ (Z/NZ)∗ then
xφ(N) = 1 (mod N)

since #(Z/NZ)∗ = φ(N). This leads us to Fermat’s Little Theorem, not to be confused with
Fermat’s Last Theorem which is something entirely different.

Theorem 1.5 (Fermat’s Little Theorem). Suppose p is a prime and a ∈ Z then

ap = a (mod p).

Fermat’s Little Theorem is a special case of Lagrange’s Theorem and will form the basis of one
of the primality tests considered in a later chapter.

2. Finite Fields

The integers modulo a prime p are not the only types of finite field. In this section we shall
introduce another type of finite field which is particularly important. At first reading you may wish
to skip this section. We shall only be using these general forms of finite fields when discussing the
Rijndael block cipher, stream ciphers based on linear feedback shift registers and when we look at
elliptic curve based systems.

For this section we let p denote a prime number. Consider the set of polynomials in X whose
coefficients are reduced modulo p. We denote this set Fp[X], which forms a ring with the natural
definition of addition and multiplication.

Of particular interest is the case when p = 2, from which we draw all our examples in this
section. For example, in F2[X] we have

(1 + X + X2) + (X + X3) = 1 + X2 + X3,

(1 + X + X2) · (X + X3) = X + X2 + X4 + X5.

8 1. MODULAR ARITHMETIC, GROUPS, FINITE FIELDS AND PROBABILITY

Just as with the integers modulo a number N , where the integers modulo N formed a ring, we can
take a polynomial f(X) and then the polynomials modulo f(X) also form a ring. We denote this
ring by

Fp[X]/f(X)Fp[X]

or more simply
Fp[X]/(f(X)).

But to ease notation we will often write Fp[X]/f(X) for this latter ring. When f(X) = X4 +1 and
p = 2 we have, for example,

(1 + X + X2) · (X + X3) (mod X4 + 1) = 1 + X2

since
X + X2 + X4 + X5 = (X + 1) · (X4 + 1) + (1 + X2).

When checking the above equation you should remember we are working modulo two.

Recall, when we looked at the integers modulo N we looked at the equation

ax = b (mod N).

We can consider a similar question for polynomials. Given a, b and f , all of which are polynomials
in Fp[X], does there exist a solution α to the equation

aα = b (mod f)?

With integers the answer depended on the greatest common divisor of a and f , and we counted
three possible cases. A similar three cases can occur for polynomials, with the most important one
being when a and f are coprime and so have greatest common divisor equal to one.

A polynomial is called irreducible if it has no proper factors other than itself and the constant
polynomials. Hence, irreducibility of polynomials is the same as primality of numbers. Just as with
the integers modulo N , when N was prime we obtained a finite field, so when f(X) is irreducible
the ring Fp[X]/f(X) also forms a finite field.

Consider the case p = 2 and the two different irreducible polynomials

f1 = X7 + X + 1

and
f2 = X7 + X3 + 1.

Now, consider the two finite fields

F1 = F2[X]/f1(X) and F2 = F2[X]/f2(X).

These both consist of the 27 binary polynomials of degree less than seven. Addition in these two
fields is identical in that one just adds the coefficients of the polynomials modulo two. The only
difference is in how multiplication is performed

(X3 + 1) · (X4 + 1) (mod f1(X)) = X4 + X3 + X,

(X3 + 1) · (X4 + 1) (mod f2(X)) = X4.

A natural question arises as to whether these fields are ‘really’ different, or whether they just “look”
different. In mathematical terms the question is whether the two fields are isomorphic. It turns
out that they are isomorphic if there is a map

φ : F1 −→ F2,

2. FINITE FIELDS 9

called a field isomorphism, which satisfies

φ(α + β) = φ(α) + φ(β),

φ(α · β) = φ(α) · φ(β).

Such an isomorphism exists for every two finite fields of the same order, although we will not show
it here. To describe the map above you only need to show how to express a root of f2(X) in terms
of a polynomial in the root of f1(X).

The above construction is in fact the only way of producing finite fields, hence all finite fields
are essentially equal to polynomials modulo a prime and modulo an irreducible polynomial (for
that prime). Hence, we have the following basic theorem

Theorem 1.6. There is (up to isomorphism) just one finite field of each prime power order.

The notation we use for these fields is either Fq or GF (q), with q = pd where d is the degree of
the irreducible polynomial used to construct the finite field. We of course have Fp = Fp[X]/X. The
notation GF (q) means the Galois field of q elements. Finite fields are sometimes named after the
19th century French mathematician Galois. Galois had an interesting life, he accomplished most
of his scientific work at an early age before dying in a duel.

There are a number of technical definitions associated with finite fields which we need to cover.
Each finite field K contains a copy of the integers modulo p for some prime p, we call this prime
the characteristic of the field, and often write this as char K. The subfield of integers modulo p of
a finite field is called the prime subfield.

There is a map Φ called the p-th power Frobenius map defined for any finite field by

Φ :
{

Fq −→ Fq

α 	−→ αp

where p is the characteristic of Fq. The Frobenius map is an isomorphism of Fq with itself, such an
isomorphism is called an automorphism. An interesting property is that the set of elements fixed
by the Frobenius map is the prime field, i.e.

{α ∈ Fq : αp = α} = Fp.

Notice that this is a kind of generalization of Fermat’s Little Theorem to finite fields. For any
automorphism χ of a finite field the set of elements fixed by χ is a field, called the fixed field of χ.
Hence the previous statement says that the fixed field of the Frobenius map is the prime field Fp.

Not only does Fq contain a copy of Fp but Fpd contains a copy of Fpe for every value of e dividing
d. In addition Fpe is the fixed field of the automorphism Φe, i.e.

{α ∈ Fpd : αpe
= α} = Fpe .

Another interesting property is that if p is the characteristic of Fq then if we take any element
α ∈ Fq and add it to itself p times we obtain zero, e.g. in F49 we have

X + X + X + X + X + X + X = 7X = 0 (mod 7).

The non-zero elements of a finite field, usually denoted F
∗
q, form a cyclic finite abelian group. We

call a generator of F
∗
q a primitive element in the finite field. Such primitive elements always exist

and so the multiplicative group is always cyclic. In other words there always exists an element
g ∈ Fq such that every non-zero element α can be written as

α = gx

for some integer value of x.
As an example consider the field of eight elements defined by

F23 = F2[X]/(X3 + X + 1).

10 1. MODULAR ARITHMETIC, GROUPS, FINITE FIELDS AND PROBABILITY

In this field there are seven non-zero elements namely

1, α, α + 1, α2, α2 + 1, α2 + α,α2 + α + 1

where α is a root of X3 + X + 1. We see that α is a primitive element in F23 since

α1 = α,

α2 = α2,

α3 = α + 1,

α4 = α2 + α,

α5 = α2 + α + 1,

α6 = α2 + 1,

α7 = 1.

Notice that for a prime p this means that the integers modulo a prime also have a primitive element,
since Z/pZ = Fp is a finite field.

3. Basic Algorithms

There are several basic numerical algorithms or techniques which everyone should know since
they occur in many places in this book. The ones we shall concentrate on here are

• Euclid’s gcd algorithm,
• the Chinese Remainder Theorem,
• computing Jacobi and Legendre symbols.

3.1. Greatest Common Divisors. In the previous sections we said that when trying to solve

a · x = b (mod N)

in integers, or
aα = b (mod f)

for polynomials modulo a prime, we needed to compute the greatest common divisor. This was
particularly important in determining whether a ∈ Z/NZ or a ∈ Fp[X]/f had a multiplicative
inverse or not, i.e. gcd(a,N) = 1 or gcd(a, f) = 1. We did not explain how this greatest common
divisor is computed, neither did we explain how the inverse is to be computed when we know it
exists. We shall now address this omission by explaining one of the oldest algorithms known to
man, namely the Euclidean algorithm.

If we were able to factor a and N into primes, or a and f into irreducible polynomials, then
computing the greatest common divisor would be particularly easy. For example if

a = 230 895 588 646 864 = 24 · 157 · 45133,

b = 33107 658 350 407 876 = 22 · 157 · 22693 · 4513,
then it is easy, from the factorization, to compute the gcd as

gcd(a, b) = 22 · 157 · 4513 = 2834 164.

However, factoring is an expensive operation for integers, but computing greatest common divisors
is easy as we shall show. Although factoring for polynomials modulo a prime is very easy, it turns
out that almost all algorithms to factor polynomials require access to an algorithm to compute
greatest common divisors. Hence, in both situations we need to be able to compute greatest
common divisors without recourse to factoring.

3. BASIC ALGORITHMS 11

3.1.1. Euclidean Algorithm: In the following we will consider the case of integers only, the
generalization to polynomials is easy since both integers and polynomials allow Euclidean division.
For integers Euclidean division is the operation of, given a and b, finding q and r with 0 ≤ r < |b|
such that

a = q · b + r.

For polynomials Euclidean division is given polynomials f, g finding polynomials q, r with 0 ≤
deg r < deg g such that

f = q · g + r.

To compute the gcd of r0 = a and r1 = b we compute r2, r3, r4, . . . as follows;

r2 = q1r1 − r0

r3 = q2r2 − r1

...
...

rm = qm−1rm−1 − rm−2

rm+1 = qmrm.

If d divides a and b then d divides r2, r3, r4 and so on. Hence

gcd(a, b) = gcd(r0, r1) = gcd(r1, r2) = · · · = gcd(rm−1, rm) = rm.

As an example of this algorithm we want to show that

3 = gcd(21, 12).

Using the Euclidean algorithm we compute gcd(21, 12) in the steps

gcd(21, 12) = gcd(21 (mod 12), 12)

= gcd(9, 12)

= gcd(12 (mod 9), 9)

= gcd(3, 9)

= gcd(9 (mod 3), 3)

= gcd(0, 3) = 3.

Or, as an example with larger numbers,

gcd(1 426 668 559 730, 810 653 094 756) = gcd(810 653 094 756, 616 015 464 974),

= gcd(616 015 464 974, 194 637 629 782),

= gcd(194 637 629 782, 32 102 575 628),

= gcd(32 102 575 628, 2 022 176 014),

= gcd(2 022 176 014, 1 769 935 418),

= gcd(1 769 935 418, 252 240 596),

= gcd(252 240 596, 4 251 246),

= gcd(4 251 246, 1 417 082),

= gcd(1 417 082, 0),
= 1417 082.

The Euclidean algorithm essentially works because the map

(a, b) 	−→ (a (mod b), b),

for a ≥ b is a gcd preserving mapping. The trouble is that computers find it much easier to add
and multiply numbers than to take remainders or quotients. Hence, implementing a gcd algorithm

12 1. MODULAR ARITHMETIC, GROUPS, FINITE FIELDS AND PROBABILITY

with the above gcd preserving mapping will usually be very inefficient. Fortunately, there are a
number of other gcd preserving mappings, for example

(a, b) 	−→

⎧⎪⎨
⎪⎩

((a− b)/2, b) If a and b are odd.

(a/2, b) If a is even and b is odd.

(a, b/2) If a is odd and b is even.

Recall that computers find it easy to divide by two, since in binary this is accomplished by a cheap
bit shift operation. This latter mapping gives rise to the binary Euclidean algorithm, which is the
one usually implemented on a computer. Essentially, this algorithm uses the above gcd preserving
mapping after first removing any power of two in the gcd. Algorithm 1.1 explains how this works,
on input of two positive integers a and b.

Algorithm 1.1: Binary Euclidean Algorithm
g = 1
/* Remove powers of two from the gcd */
while (a mod 2 = 0) and (b mod 2 = 0) do

a = a/2
b = b/2
g = 2 · g

end
/* At least one of a and b is now odd */
while a �= 0 do

while a mod 2 = 0 do a = a/2
while b mod 2 = 0 do b = b/2
/* Now both a and b are odd */
if a ≥ b then a = (a− b)/2
else b = (b− a)/2

end
return g · b

3.1.2. Extended Euclidean Algorithm: Using the Euclidean algorithm we can determine when
a has an inverse modulo m by testing whether

gcd(a,m) = 1.

But we still do not know how to determine the inverse when it exists. To do this we use a variant
of Euclid’s gcd algorithm, called the extended Euclidean algorithm. Recall we had

ri−2 = qi−1ri−1 + ri

3. BASIC ALGORITHMS 13

with rm = gcd(r0, r1). Now we unwind the above and write each ri, for i ≥ 2, in terms of a and b.
For example

r2 = r0 − q1r1 = a− q1b

r3 = r1 − q2r2 = b− q2(a− q1b) = −q2a + (1 + q1q2)b
...

...
ri−2 = si−2a + ti−2b

ri−1 = si−1a + ti−1b

ri = ri−2 − qi−1ri−1

= a(si−2 − qi−1si−1) + b(ti−2 − qi−1ti−1)
...

...
rm = sma + tmb.

The extended Euclidean algorithm takes as input a and b and outputs rm, sm and tm such that

rm = gcd(a, b) = sma + tmb.

Hence, we can now solve our original problem of determining the inverse of a modulo N , when such
an inverse exists. We first apply the extended Euclidean algorithm to a and N so as to compute
d, x, y such that

d = gcd(a,N) = xa + yN.

We can solve the equation ax = 1 (mod N), since we have d = xa + yN = xa (mod N). Hence,
we have a solution x = a−1, precisely when d = 1.

As an example suppose we wish to compute the inverse of 7 modulo 19. We first set r0 = 7 and
r1 = 19 and then we compute

r2 = 5 = 19− 2 · 7
r3 = 2 = 7− 5 = 7− (19− 2 · 7) = −19 + 3 · 7
r4 = 1 = 5− 2 · 2 = (19 − 2 · 7)− 2 · (−19 + 3 · 7) = 3 · 19− 8 · 7.

Hence,
1 = −8 · 7 (mod 19)

and so
7−1 = −8 = 11 (mod 19).

3.2. Chinese Remainder Theorem (CRT). The Chinese Remainder Theorem, or CRT, is
also a very old piece of mathematics, which dates back at least 2000 years. We shall use the CRT
in a few places, for example to improve the performance of the decryption operation of RSA and
in a number of other protocols. In a nutshell the CRT states that if we have the two equations

x = a (mod N) and x = b (mod M)

then there is a unique solution modulo M ·N if and only if gcd(N,M) = 1. In addition it gives a
method to easily find the solution. For example if the two equations are given by

x = 4 (mod 7),

x = 3 (mod 5),

then we have
x = 18 (mod 35).

It is easy to check that this is a solution, since 18 (mod 7) = 4 and 18 (mod 5) = 3. But how did
we produce this solution?

14 1. MODULAR ARITHMETIC, GROUPS, FINITE FIELDS AND PROBABILITY

We shall first show how this can be done naively from first principles and then we shall give
the general method. We have the equations

x = 4 (mod 7) and x = 3 (mod 5).

Hence for some u we have
x = 4 + 7u and x = 3 (mod 5).

Putting these latter two equations into one gives,

4 + 7u = 3 (mod 5).

We then rearrange the equation to find

2u = 7u = 3− 4 = 4 (mod 5).

Now since gcd(2, 5) = gcd(7, 5) = 1 we can solve the above equation for u. First we compute 2−1

(mod 5) = 3, since 2 · 3 = 6 = 1 (mod 5). Then we compute the value of u = 3 · 4 (mod 5). Then
substituting this value of u back into our equation for x gives the solution

x = 4 + 7u = 4 + 7 · 2 = 18.

The case of two equations is so important we now give a general formula. We assume that
gcd(N,M) = 1, and that we are given the equations

x = a (mod M) and x = b (mod N).

We first compute
T = M−1 (mod N)

which is possible since we have assumed gcd(N,M) = 1. We then compute

u = (b− a)T (mod N).

The solution modulo M ·N is then given by

x = a + uM.

To see this always works we compute

x (mod M) = a + uM (mod M)
= a,

x (mod N) = a + uM (mod N)

= a + (b− a)TM (mod N)

= a + (b− a)M−1M (mod N)

= a + (b− a) (mod N)
= b.

Now we turn to the general case of the CRT where we consider more than two equations at
once. Let m1, . . . ,mr be pairwise relatively prime and let a1, . . . , ar be given. We want to find x
modulo M = m1m2 · · ·mr such that

x = ai (mod mi) for all i.

The Chinese Remainder Theorem guarantees a unique solution given by

x =
r∑

i=1

aiMiyi (mod M)

3. BASIC ALGORITHMS 15

where

Mi = M/mi,

yi = M−1
i (mod mi).

As an example suppose we wish to find the unique x modulo

M = 1001 = 7 · 11 · 13
such that

x = 5 (mod 7),

x = 3 (mod 11),

x = 10 (mod 13).

We compute
M1 = 143, y1 = 5,
M2 = 91, y2 = 4,
M3 = 77, y3 = 12.

Then, the solution is given by

x =
r∑

i=1

aiMiyi (mod M)

= 715 · 5 + 364 · 3 + 924 · 10 (mod 1001)
= 894.

3.3. Legendre and Jacobi Symbols. Let p denote a prime, greater than two. Consider the
mapping

Fp −→ Fp

α 	−→ α2.

This mapping is exactly two-to-one on the non-zero elements of Fp. So if an element x in Fp has a
square root, then it has exactly two square roots (unless x = 0) and exactly half of the elements of
F
∗
p are squares. The set of squares in F

∗
p are called the quadratic residues and they form a subgroup,

of order (p − 1)/2 of the multiplicative group F
∗
p. The elements of F

∗
p which are not squares are

called the quadratic non-residues.
To make it easy to detect squares modulo p we define the Legendre symbol(

a

p

)
.

This is defined to be equal to 0 if p divides a, it is equal to +1 if a is a quadratic residue and it is
equal to −1 if a is a quadratic non-residue.

It is easy to compute the Legendre symbol, for example via(
a

p

)
= a(p−1)/2 (mod p).

However, using the above formula turns out to be very inefficient. In practice one uses the law of
quadratic reciprocity

(1)
(

q

p

)
=

(
p

q

)
(−1)(p−1)(q−1)/4 .

16 1. MODULAR ARITHMETIC, GROUPS, FINITE FIELDS AND PROBABILITY

In other words we have

(
q

p

)
=

⎧⎪⎪⎨
⎪⎪⎩
−

(
p

q

)
If p = q = 3 (mod 4),

(
p

q

)
Otherwise

Using this law with the following additional formulae gives rise to a recursive algorithm(
q

p

)
=

(
q (mod p)

p

)
,(2)

(
q · r
p

)
=

(
q

p

)
·
(

r

p

)
,(3)

(
2
p

)
= (−1)(p

2−1)/8.(4)

Assuming we can factor, we can now compute the Legendre symbol(
15
17

)
=

(
3
17

)
·
(

5
17

)
by Equation (3)

=
(

17
3

)
·
(

17
5

)
by Equation (1)

=
(

2
3

)
·
(

2
5

)
by Equation (2)

= (−1) · (−1)3 by Equation (4)
= 1.

In a moment we shall see a more efficient algorithm which does not require us to factor integers.

Computing square roots of elements in F
∗
p, when the square root exists turns out to be an easy

task. Algorithm 1.2 gives one method, called Shanks’ Algorithm, of computing the square root of
a modulo p, when such a square root exists.

When p = 3 (mod 4), instead of the above algorithm, we can use the following formulae

x = a(p+1)/4 (mod p),

which has the advantage of being deterministic and more efficient than the general method of
Shanks. That this formula works is because

x2 = a(p+1)/2 = a(p−1)/2 · a =
(

a

p

)
· a = a

where the last equality holds since we have assumed that a is a quadratic residue modulo p and so
it has Legendre symbol equal to one.

The Legendre symbol above is only defined when its denominator is a prime, but there is a
generalization to composite denominators called the Jacobi symbol. Suppose n ≥ 3 is odd and

n = pe1
1 pe2

2 · · · pek
k

then the Jacobi symbol (a

n

)
is defined in terms of the Legendre symbol by(a

n

)
=

(
a

p1

)e1
(

a

p2

)e2

· · ·
(

a

pk

)ek

.

3. BASIC ALGORITHMS 17

Algorithm 1.2: Shanks’ algorithm for square roots modulo p

Choose a random n until one is found such that(
n

p

)
= −1

Let e, q be integers such that q is odd and p− 1 = 2eq

y = nq (mod p)
r = e

x = a(q−1)/2 (mod p)
b = ax2 (mod p)
x = ax (mod p)
while b �= 1 (mod p) do

Find the smallest m such that b2m
= 1 (mod p)

t = y2r−m−1
(mod p)

y = t2 (mod p)
r = m

x = xt (mod p)
b = by (mod p)

end
return x

The Jacobi symbol can be computed using a similar method to the Legendre symbol by making
use of the identity, derived from the law of quadratic reciprocity,(a

n

)
=

(
2
n

)e (n (mod a1)
a1

)
(−1)(a1−1)(n−1)/4.

where a = 2ea1 and a1 is odd. We also require the identities, for n odd,(
1
n

)
= 1,

(
2
n

)
= (−1)(n

2−1)/8,

(−1
n

)
= (−1)(n−1)/2.

This now gives us a fast algorithm, which does not require factoring of integers, to determine the
Jacobi symbol, and so the Legendre symbol in the case where the denominator is prime. The only
factoring required is that of extracting the even part of a number:(

15
17

)
= (−1)56

(
17
15

)

=
(

2
15

)

= (−1)28 = 1.

Recall the Legendre symbol
(

a
p

)
tells us whether a is a square modulo p, for p a prime. Alas,

the Jacobi symbol
(

a
n

)
does not tell us the whole story about whether a is a square modulo n,

18 1. MODULAR ARITHMETIC, GROUPS, FINITE FIELDS AND PROBABILITY

when n is a composite. If a is a square modulo n then the Jacobi symbol will be equal to plus one,
however if the Jacobi symbol is equal to plus one then it is not always true that a is a square.

Let n ≥ 3 be odd and let the set of squares in (Z/nZ)∗ be denoted

Qn = {x2 (mod n) : x ∈ (Z/nZ)∗}.
Now let Jn denote the set of elements with Jacobi symbol equal to plus one, i.e.

Jn =
{
x ∈ (Z/nZ)∗ :

(a

n

)
= 1

}
.

The set of pseudo-squares is the difference Jn \Qn.
There are two important cases for cryptography, either n is prime or n is the product of two

primes:
• n is a prime p.

• Qn = Jn.
• #Qn = (n− 1)/2.

• n is the product of two primes, n = p · q.
• Qn ⊂ Jn.
• #Qn = #(Jn \Qn) = (p− 1)(q − 1)/4.

The sets Qn and Jn will be seen to be important in a number of algorithms and protocols, especially
in the case where n is a product of two primes.

Finally, we look at how to compute a square root modulo a composite number n = p·q. Suppose
we wish to compute the square root of a modulo n. We assume we know p and q, and that a really
is a square modulo n, which can be checked by demonstrating that(

a

p

)
=

(
a

q

)
= 1.

We first compute the square root of a modulo p, call this sp. Then we compute the square root
of a modulo q, call this sq. Finally to deduce the square root modulo n, we apply the Chinese
Remainder Theorem to the equations

x = sp (mod p) and x = sq (mod q).

As an example suppose we wish to compute the square root of a = 217 modulo n = 221 = 13 · 17.
Now the square root of a modulo 13 and 17 is given by

s13 = 3 and s17 = 8.

Applying the Chinese Remainder Theorem we find

s = 42

and we can check that s really is a square root by computing

s2 = 422 = 217 (mod n).

There are three other square roots, since n has two prime factors. These other square roots are
obtained by applying the Chinese Remainder Theorem to the three other equations

s13 = 10, s17 = 8,
s13 = 3, s17 = 9,
s13 = 10, s17 = 9,

Hence, all four square roots of 217 modulo 221 are given by

42, 94, 127 and 179.

4. PROBABILITY 19

4. Probability

At some points we will need a basic understanding of elementary probability theory. In this
section we summarize the theory we require and give a few examples. Most readers should find this
a revision of the type of probability encountered in high school.

A random variable is a variable X which takes certain values with given probabilities. If X
takes on the value s with probability 0.01 we write this as

p(X = s) = 0.01.

As an example, let T be the random variable representing tosses of a fair coin, we then have the
probabilities

p(T = Heads) =
1
2
,

p(T = Tails) =
1
2
.

As another example let E be the random variable representing letters in English text. An analysis
of a large amount of English text allows us to approximate the relevant probabilities by

p(E = a) = 0.082,
...

p(E = e) = 0.127,
...

p(E = z) = 0.001.

Basically if X is a discrete random variable and p(X = x) is the probability distribution then we
have the two following properties:

p(X = x) ≥ 0,∑
x

p(X = x) = 1.

It is common to illustrate examples from probability theory using a standard deck of cards. We
shall do likewise and let V denote the random variable that a card is a particular value, let S denote
the random variable that a card is a particular suit and let C denote the random variable of the
colour of a card. So for example

p(C = Red) =
1
2
,

p(V = Ace of Clubs) =
1
52

,

p(S = Clubs) =
1
4
.

Let X and Y be two random variables, where p(X = x) is the probability that X takes the value
x and p(Y = y) is the probability that Y takes the value y. The joint probability p(X = x, Y = y)
is defined as the probability that X takes the value x and Y takes the value y. So if we let X = C

20 1. MODULAR ARITHMETIC, GROUPS, FINITE FIELDS AND PROBABILITY

and Y = S then we have

p(C = Red, S = Club) = 0, p(C = Red, S = Diamonds) =
1
4
,

p(C = Red, S = Hearts) =
1
4
, p(C = Red, S = Spades) = 0,

p(C = Black, S = Club) =
1
4
, p(C = Black, S = Diamonds) = 0,

p(C = Black, S = Hearts) = 0, p(C = Black, S = Spades) =
1
4
.

Two random variables X and Y are said to be independent if, for all values of x and y,

p(X = x, Y = y) = p(X = x) · p(Y = y).

Hence, the random variables C and S are not independent. As an example of independent random
variables consider the two random variables, T1 the value of the first toss of an unbiased coin and
T2 the value of a second toss of the coin. Since, assuming standard physical laws, the toss of the
first coin does not affect the outcome of the toss of the second coin, we say that T1 and T2 are
independent. This is confirmed by the joint probability distribution

p(T1 = H,T2 = H) =
1
4
, p(T1 = H,T2 = T) =

1
4
,

p(T1 = T, T2 = H) =
1
4
, p(T1 = T, T2 = T) =

1
4
.

4.1. Bayes’ Theorem. The conditional probability p(X = x|Y = y) of two random variables
X and Y is defined as the probability that X takes the value x given that Y takes the value y.

Returning to our random variables based on a pack of cards we have

p(S = Spades|C = Red) = 0

and

p(V = Ace of Spades|C = Black) =
1
26

.

The first follows since if we know a card is red, then the probability that it is a spade is zero, since
a red card cannot be a spade. The second follows since if we know a card is black then we have
restricted the set of cards in half, one of which is the ace of spades.

The following is one of the most crucial statements in probability theory

Theorem 1.7 (Bayes’ Theorem). If p(Y = y) > 0 then

p(X = x|Y = y) =
p(X = x) · p(Y = y|X = x)

p(Y = y)

=
p(X = x, Y = y)

p(Y = y)
.

We can apply Bayes’ Theorem to our examples above as follows

p(S = Spades|C = Red) =
p(S = Spades, C = Red)

p(C = Red)

= 0 ·
(

1
4

)−1

= 0.

Chapter Summary 21

p(V = Ace of Spades|C = Black) =
p(V = Ace of Spades, C = Black)

p(C = Black)

=
1
52
·
(

1
2

)−1

=
2
52

=
1
26

.

If X and Y are independent then we have

p(X = x|Y = y) = p(X = x),

i.e. the value which X takes does not depend on the value that Y takes.

4.2. Birthday Paradox. Another useful result from elementary probability theory that we
require is the birthday paradox. Suppose a bag has m balls in it, all of different colours. We draw
one ball at a time from the bag and write down its colour, we then replace the ball in the bag and
draw again.

If we define
m(n) = m · (m− 1) · (m− 2) · · · (m− n + 1)

then the probability, after n balls have been taken out of the bag, that we have obtained at least
one matching colour (or coincidence) is

1− m(n)

mn
.

As m becomes larger the expected number of balls we have to draw before we obtain the first
coincidence is √

πm

2
.

To see why this is called the birthday paradox consider the probability of two people in a room
sharing the same birthday. Most people initially think that this probability should be quite low,
since they are thinking of the probability that someone in the room shares the same birthday as
them. One can now easily compute that the probability of at least two people in a room of 23
people having the same birthday is

1− 365(23)

36523
≈ 0.507.

In fact this probability increases quite quickly since in a room of 30 people we obtain a probability
of approximately 0.706, and in a room of 100 people we obtain a probability of over 0.999 999 6.

Chapter Summary

• A group is a set with an operation which has an identity, is associative and every element
has an inverse. Modular arithmetic, both addition and multiplication, provides examples
of groups. However, for multiplication we need to be careful which set of numbers we take
when defining a group with respect to modular multiplication.

• A ring is a set with two operations which behaves like the set of integers under addition
and multiplication. Modular arithmetic is an example of a ring.

• A field is a ring in which all non-zero elements have a multiplicative inverse. Integers
modulo a prime are examples of fields.

22 1. MODULAR ARITHMETIC, GROUPS, FINITE FIELDS AND PROBABILITY

• Multiplicative inverses for modular arithmetic can be found using the extended Euclidean
algorithm.

• Sets of simultaneous linear modular equations can be solved using the Chinese Remainder
Theorem.

• Square elements modulo a prime can be detected using the Legendre symbol, square roots
can be efficiently computed using Shanks’ Algorithm.

• Square elements and square roots modulo a composite can be determined efficiently as
long as one knows the factorization of the modulus.

• Bayes’ theorem allows us to compute conditional probabilities.
• The birthday paradox allows us to estimate how quickly collisions occur when one repeat-

edly samples from a finite space.

Further Reading

Bach and Shallit is the best introductory book I know which deals with Euclid’s algorithm
and finite fields. It contains a lot of historical information, plus excellent pointers to the relevant
research literature. Whilst aimed in some respects at Computer Scientists, Bach and Shallit’s book
may be a little too mathematical for some. For a more traditional introduction to the basic discrete
mathematics we shall need, at the level of a first year course in Computer Science, see the books
by Biggs or Rosen.

E. Bach and J. Shallit. Algorithmic Number Theory. Volume 1: Efficient Algorithms. MIT Press,
1996.

N.L. Biggs. Discrete Mathematics. Oxford University Press, 1989.

K.H. Rosen. Discrete Mathematics and its Applications. McGraw-Hill, 1999.

