COMS W3261: Computer Science Theory.
Instructor: Tal Malkin

DFAs and NFAs: Example from Class

This note summarizes what we have seen in class towards the end of lecture 3 (as well
as a brief discussion at the end of lecture 2), with respect to one example, demonstrating
the power of NFAs (and of DFAs). The note is detailed, recapping and expanding on
the discussion and intuition. This is meant to help understanding, based on some student
questions (not to overwhelm you with a long note!).

Consider the following language over the alphabet ¥ = {0, 1}:

L = {zy | x has an even number of 1s, y has an even number of Os}

Discussion. We saw this example at the end of lecture 2, and discussed whether or not
this language is regular. Based on what we learned up to that point (just that a language is
regular iff there exists a DFA that recognizes it), this was hard to answer. It seemed hard
to come up with a DFA, because as we read the input from left to right we can’t tell where
we should parse the input (where z ends and y begins), and if we try one parsing and it
doesn’t work, we cannot go back on the input and try again (the input symbols have been
consumed). On the other hand, we don’t yet know how to prove a language is not regular,
and perhaps there’s some clever way to build a DFA for this language after all, some trick
that will allow you, using only finitely many states, to figure out whether the input word
can be parsed in this way? It turns out the answer is yes. But figuring it out with just the
definition of DFASs requires some creativity and intuition (coming up with the right approach
and solution), and mathematical sophistication (proving that it works). In contrast, as we
saw in class and summarize below, coming up with an NFA is much easier, and applying the
subset construction can be done systematically without requiring creativity. This is one way
that NFAs are helpful, even though ultimately they have the same computational power as
DFAs (recognizing regular languages).

An NFA for this language

In lecture 3 we defined NFAs. Based on the definition of an NFA computation, it was
relatively easy to come up with an NFA for this language, and the students suggested the
following NFA:

0 0
1
start — e
1
0
0
1 1

COMS W3261, Computer Science Theory, DFAs and NFAs: Example from Class, p. 1



Transforming the NFA to a DFA for this language

We also proved in class that for any language recognized by an NFA, there is a DFA recog-
nizing the same language (namely, the language is regular). This is proved constructively,

via the subset construction. Applying this subset construction to the NFA above, resulted
in the following DFA:

Recall that we obtained this DFA by constructing states where each state in the DFA
corresponds to a subset of states in the NFA:

e A corresponds to {qi,q3}

B corresponds to {q1, 43,4}

C corresponds to {q, g3}

D corresponds to {q2,q4}
e E corresponds to {gq, 3, ¢}

We could in general have additional states in the DFA corresponding to all other sub-
sets of states of the NFA (in this case, having 16 DFA states {A,..., P}), but as we were
constructing this DFA, only 5 such states were reachable from the start state (after adding
{A,..., E} there were no transitions that need to go to new states not previously encoun-
tered). Recall that transitions were determined based on imagining all possible ways to
perform the transition in the NFA, examining what possible subset of states in the NFA this
would lead to, and then transitioning to the (unique) state in the DFA that corresponds to
that subset. The accepting states are all states corresponding to a subset containing at least
one accepting state from the NFA. In this case the only accepting state in the NFA is g3,
and thus states A, B, C, F/ in the NFA are accepting.

Looking at this DFA, we may notice that we can collapse the states B, E to the same
state, since once you get to B your string will be accepted no matter what comes next. This
gives the following smaller DFA:

COMS W3261, Computer Science Theory, DFAs and NFAs: Example from Class, p. 2



We have explained above how we came up with this DFA. However, even without under-
standing how we got there, you can easily verify that the above is indeed a DFA, and you
can try running it on various strings and checking that it indeed gives the correct output
with respect to our example language.

You can further examine this DFA to understand the language better. For example, it is
apparent from the DFA that any string that starts with 0 is accepted — can you prove that
indeed any string that starts with 0 can be parsed as xy satisfying the required properties?

As mentioned above, one could come up with the above DFA directly from the language
(and some students — at least last year — did). But going through an NFA is easier.

COMS W3261, Computer Science Theory, DFAs and NFAs: Example from Class, p. 3



