1. Consider the following (high-level) description of a TM T, which expects an input of the form $\langle G \rangle$, encoding a directed graph G.

T: “On input $\langle G \rangle$:

1. Check that $\langle G \rangle$ is an encoding of a directed graph with at most one outgoing edge from each node. If it’s not of this form, reject.
2. Selected the first node of G and mark it with two marks, corresponding to ‘visited’ and to ‘current’.
3. If the node u marked as ‘current’ has an outgoing edge to another node v, move the ‘current’ mark from u to v. Mark v as ‘visited’ (if it’s not already marked this way). Go to 3.
4. If the node u marked as ‘current’ does not have any outgoing edge, scan the input for the first node v that is not marked as ‘visited’. If there is such a v, move the ‘current’ mark from u to v, mark v as visited, and go to 3. If there is no such v, accept.”

(a) What is the language recognized by T?

(b) Is T a recognizer? Explain your answer. If your answer is no, show a recognizer for the same language.

(c) Is T a decider? Explain your answer. If your answer is no, show a decider for the same language.

2. Let $L_1 = \{ \langle D \rangle \mid D$ is a DFA over $\Sigma = \{0, 1\}$, and D recognizes the language $L(1^*) \}$.

Prove that L_1 is decidable.

3. Let $L_2 = \{ \langle M \rangle \mid M$ is a TM and M accepts at least two different strings \}$.

Prove that L_2 is recognizable.

4. Recall that for a language L over alphabet Σ, we define

$$\text{grep}(L) = \{ x \in \Sigma^* \mid x \text{ has a substring } w \in L \}.$$

Prove that the class of TM-recognizable languages is closed under the grep operation.

5. Extra Credit: For this problem, use implementation level description.

When defining a k-tape TM, one option is to allow each of the heads to move right, left, or stay put, namely using a transition function $\delta : Q \times \Gamma^k \to Q \times \Gamma^k \times \{L, R, S\}^k$.

Another option is to require that each head must move right or left (as we did for our definition of a standard, one tape TM). This corresponds to using a transition function \(\delta : Q \times \Gamma^k \rightarrow Q \times \Gamma^k \times \{L, R\}^k \).

Show that these two models are equivalent to each other, via a transformation that requires only a linear overhead in running time. That is, if the given TM (in one of the models) runs on an input of length \(n \) for at most \(t \) steps, your constructed TM (in the other model) runs on an input of length \(n \) for at most \(O(n + t) \) steps.

As an aside, note that without the efficiency restriction, it is easy to show the two models are equivalent in power, since either of these models can be simulated by a single tape TM in the same way we showed in class (and in turn, a single tape TM can be trivially simulated by a multi-tape TM of either type). However, as mentioned in class, this transformation requires a quadratic overhead (if the running time of the multi-tape TM is \(t \), the running time of the equivalent one-tape TM is at least \(O(t^2) \)). This overhead is inherent for any transformation from multiple tapes to a single tape.