
COMS W3261: Computer Science Theory, Spring 2018.
Instructor: Tal Malkin

DFA can be exponentially larger than equivalent NFA

These notes cover a theorem we proved in lecture 4, which is not covered in Sipser’s textbook.
The theorem shows that sometimes the transformation from an NFA to an equivalent DFA
necessitates an exponential blow up in the number of states.

Definition 1. For an arbitrary n ∈ N, define the language

Ln = {w ∈ {0, 1}∗ | the n-th to last symbol in w is 1}

Claim 2. For all n, there is an NFA with n+ 1 states recognizing Ln.

Proof. For any fixed n, define the NFA Nn = ({q0, . . . , qn}, {0, 1}, δ, q0, {qn}) where δ is
defined as follows:

δ(q0, 0) = {q0}
δ(q0, 1) = {q0, q1}
δ(qi, a) = {qi+1} ∀i ∈ {1, . . . , n− 1}, a ∈ {0, 1}
δ(qn, a) = ∅ ∀a ∈ {0, 1}
δ(qi, ε) = ∅ ∀i ∈ {0, . . . , n}

(The last two lines could be omitted, if we use the convention that the NFA transition
function returns ∅ on any inputs that were not yet specified.)
It is not hard to verify that Nn recognizes the language Ln.

Theorem 3. For any n ∈ N, any DFA recognizing the language Ln must have at least 2n

states.

Proof. Assume towards contradiction that there’s a DFA D with fewer than 2n states rec-
ognizing the language Ln. Consider the set of all n bit strings. There are 2n different n-bit
strings, but fewer than 2n states in D, so by pigeonhole principle, there must be two different
strings w,w′ ∈ {0, 1}n such that the computation of D on w and w′ ends in the same state.
Note that this also means that the computation of D on wz and on w′z ends in the same
state, for any string z. Write w = w1 . . . wn and w′ = w′1 . . . w

′
n (bit representation). Since

w 6= w′, they must differ in at least one location. Take some i ∈ {1, . . . , n} such that wi 6= w′i,
which means one of wi, w

′
i is 0 and the other one is 1. Append the string z = 0i−1 to each

of w,w′. The n-th to last bit in w1 . . . wn0i−1 is wi, and the n-th to last bit in w′1 . . . w
′
n0i−1

is w′i, one of which is 0 and one of which is 1. Thus, one of these strings is in Ln and one is
not in Ln. However, the computation of the DFA D on both these strings ends in the same
state, which, whether it is an accepting state or not, gives the wrong output on one of these
strings. That is, one of these two strings w0i−1 or w′0i−1 is a counter example contradicting
the fact that D recognizes Ln.

We have just proved that for any n there exists a language (Ln) where the number of
states in the best possible DFA for the language is at least 2n, but there is an NFA for the
language with n+1 states. This implies that the exponential blow up in the number of states
we have in our subset construction is inherent to any general construction transforming an
arbitrary NFA to an equivalent DFA.

COMS W3261, CS Theory Spring 2018, DFA can be exponentially larger than equivalent NFA, p. 1

Remarks

• In the proof above we chose z = 0i−1, but the same proof would go through with any
string z such that |z| = i− 1

• We note that the theorem does not mean that for every language the smallest DFA
must be larger than the smallest NFA (we saw several examples where this was not
the case; one simple example is the one-state DFA for the language Σ∗, which clearly
cannot be improved even if we allow an NFA).

• As a sanity check, and to make sure you understand the proof, can you see where the
proof of Theorem 3 uses the fact that D is a DFA and not an NFA?

• A fundamental result in the theory of regular languages, the Myhill-Nerode theorem,
characterizes the regular languages and can be used to find the minimal DFA which
recognizes a given language, or to prove that the language is not regular and no DFA
exists.1 What we proved here for the language Ln can be presented in terms of the
Myhill-Nerode theorem, showing that the minimal DFA for this language has size at
least 2n. It can also be shown (via the Myhill-Nerode theorem or via a construction)
that there is a DFA with 2n states for this language, and so the minimal DFA has
exactly 2n states. The Myhill-Nerode theorem is not part of the required material
for our class, but it is covered briefly in the textbook in problems 1.51,1.52, and we
will provide a handout with further exposition and examples for interested students,
courtesy of Spring 2017 CA Michael Tong.

1We also mention that given a specific DFA for a language, there are algorithms for minimizing it to get
an equivalent DFA with a minimal number of states. We will not cover this in class.

COMS W3261, CS Theory Spring 2018, DFA can be exponentially larger than equivalent NFA, p. 2

