
THE MYHILL-NERODE THEOREM

MICHAEL TONG

Abstract. The Myhill-Nerode theorem is a fundamental result in
the theory of regular languages. It can be used to prove whether or
not a language L is regular and it can be used to find the minimal
number of states in a DFA which recognizes L if L is regular. This
handout is recommended reading for interested students, but it is
not part of the required material for the class this semester.

1. Statement of the Theorem

The key concept to the Myhill-Nerode theorem is the distinguishing
extension.

Definition 1.1. Let L ⊆ Σ∗ be any language over the alphabet Σ.
For x, y ∈ Σ∗ we call z ∈ Σ∗ a distinguishing extension of x and y if
exactly one of xz and yz are in L (where xz is the concatenation of x
and z). If such a z exists, we say that x and y are distinguishable by
L; otherwise we say x and y are indistinguishable by L.

The intuition behind this definition is the following: suppose L is
regular and is recognized by a DFA D. For any string s, Let QD(s) be
the state D is in after reading s. Then if QD(x) = QD(y), then for any
string z we will have QD(xz) = QD(yz), so that D accepts either both
xz and yz or none of them. Thus x and y are indistinguishable by L.

On the other hand, if QD(x) 6= QD(y), then it’s still possible that x
and y are indistinguishable by L. In this case, we say that the states
QD(x) and QD(y) are equivalent, and the two states can be combined
into one state without changing the behavior of the DFA. Similarly, if
x and y are in fact distinguishable by L, then QD(x) and QD(y) will
not be equivalent to each other. (For a more rigorous definition of state
equivalence, see section 4.4 of HMU)

Proposition 1.2. Let L ⊆ Σ∗ be a language. Define ∼L to be the re-
lation on Σ∗ where x ∼L y iff x and y are indistinguishable by L. Then
∼L is reflexive, symmetric, and transitive so that ∼L is an equivalence
relation on Σ∗.

Date: February 5, 2017.
1

2 MICHAEL TONG

Now recall that an equivalence relation ∼ on a set S induces equiv-
alence classes which partition S into subsets of elements related to
each other by ∼. For example, let ∼ be a relation on the set of inte-
gers (denoted Z) defined by a ∼ b iff a ≡ b (mod 3). Then ∼ is an
equivalence relation and it partitions Z into three equivalence classes
[0], [1], [2] defined by [i] = {n ∈ Z | n ≡ i (mod 3)}.

Remark 1.3. If x ∈ L and y 6∈ L, then x and y are distinguishable by
L: we can take the distinguishing extension to be the empty string ε.
Thus, the equivalence classes will contain strings which are either all
in L or all not in L.

Remark 1.4. If L is regular and recognized by a DFA D, then x and
y are in the same equivalence class of ∼L iff the states QD(x) and
QD(y) are equivalent. Thus, if a DFA D has no states which are equiv-
alent to each other, then x and y are in the same equivalence class iff
QD(x) = QD(y) and it can be shown that D has the least amount of
states possible. So let L be regular and let D be its minimal DFA with
states {q0, q1, . . . , qn}. We can then systematically define the equiva-
lence classes of ∼L to be the sets 〈i〉 = {w ∈ Σ∗ | QD(w) = qi}. Notice
that this realization actually gives the first remark as a corollary.

We are now ready to state the theorem.

Theorem 1.5. Let L ⊆ Σ∗ be a language. Then L is regular iff the
number of equivalence classes of ∼L is finite; furthermore, if L is regu-
lar then the number of equivalence classes of ∼L is also the number of
states in the minimal DFA.

Thus, when talking about a regular language L, we can break it into
its most essential pieces, namely the equivalence classes of ∼L. Now
let’s look at some examples.

2. Examples

Example 2.1. Let L = 01∗. What are the equivalence classes? First
notice that ε is distinguishable from all other strings in {0, 1}∗. Indeed,
if w is a non-empty binary string then w0 is not in L but ε0 = 0 is.
Another equivalence class would be strings which are not in the right
”format”, since then no matter what extension z is added the string
would still not be in the language. This would include strings which
start with 1 and strings which contain more than one 0. There is only
one other equivalence class, and these are the strings in L, which gives
3 equivalence classes and thus L is regular and has a minimal DFA
with 3 states.

THE MYHILL-NERODE THEOREM 3

On the other hand, consider the following minimal DFA:

q0start q1

qfail

0

1

0

1

0, 1

It is now clearer exactly how the equivalence classes relate to states:
each equivalence class simply consists of the strings which cause the
DFA to be in the same state. Indeed, the initial state has no arrows
going to it, and thus only corresponds to the string ε. The state qfail
refers to the strings with ”improper format,” which the DFA agrees are
those strings which start with 1 or have more than one 0. And finally
the state q1 refers to the strings in the language. Indeed, the fact that
L itself is contained entirely in one equivalence classes corresponds to
the fact that the minimal DFA has only one accepting state!

Example 2.2. Let L = {anbn | n ≥ 0}, the classic example of a
language that is not regular. We will show that L has infinitely many
equivalence classes by showing that ak and aj are distinguishable by L
whenever k 6= j. Indeed, for x = ak and y = aj, we may take z = bk.
Then xz = akbk is in L but yz = ajbk is not. Thus, each equivalence
class of L can contain at most one string of the form aj, so there must
be infinitely many equivalence classes. So L is not regular.

Example 2.3. Let

L = {xy | x has even number of 1′s, y has an even number of 0′s}
be the language discussed in class. As we have seen, the following is a
DFA for L:

Astart B

C

D

0

1

1
0,1

0 0

1

4 MICHAEL TONG

However, even with this state diagram, it is difficult to understand
intuitively why this DFA works (we obtained it by transforming an
NFA for the language). A student who chooses to stay anonymous
has obtained this DFA directly and offered the following explanation:
first, notice that if a string has either an even number of 0s or an even
number of 1s, then it will be in the language since we can take x or
y to be the empty string, respectively. So the only strings which may
possibly be rejected are those with an odd number of zeros and an odd
number of ones. Furthermore, if a string w has a prefix which has an
even number of 1s and an odd number of 0s, then w ∈ L. Indeed, if
such a w has an even number of 0s or 1s then it will be accepted and
otherwise it has an odd number of 0s and 1s. In that case if we take x
to be the prefix with an even number of 1s and odd number of 0s, then
y will have an even number of 0s, so w is in the language. Conversely,
if a string w with an odd number of 1s and 0s has a parsing as xy
that puts it in the language, it must be the case that x has an even
number of 1s (by definition) and an odd number of 0s (since y has an
even number of 0s), so that this condition characterizes the language
(it is an if and only if).

With this in mind, the state diagram becomes much more clear. Each
state corresponds to the parity of each symbol in the string: state A
refers to even 0s and even 1s, state C is even 0s and odd 1s, state D is
odd 0s and odd 1s, and state B is odd 0s and even 1s, at which point it
loops back on itself indefinitely for the reasons stated above. In terms
of Myhill-Nerode, the equivalence classes of ∼L are the following:

• (B) Strings with a prefix with odd 0s and even 1s
• (A) Strings without the above prefix with even 0s and even 1s
• (C) Strings without the above prefix with even 0s and odd 1s
• (D) Strings without the above prefix with odd 0s and odd 1s

Indeed, none of these classes could be collapsed, as for any two of
them there is a distinguishing extension (for D and any other class take
ε, for A,B take 10, for A,C take 0, for B,C take 0). This means that
this 4-state DFA is the minimal DFA for the language.

Example 2.4. We saw in class that the language

Ln = {w ∈ {0, 1}∗ | the n-th to last symbol in w is 1}

cannot have a DFA with fewer than 2n states. While we didn’t use this
terminology, our proof relied on proving that all n-bit strings are dis-
tinguishable by Ln, which implies that there are at least 2n equivalence
classes (one for each n-bit string). We can prove that there are exactly
2n equivalence classes by showing that every string of length > n is

THE MYHILL-NERODE THEOREM 5

equivalent to its n-bit suffix, and every string w of length |w| < n is
equivalent to the n-bit string 0n−|w|w. Thus, the minimal DFA for Ln

has 2n states.

