1. (25 points) Prove that for any language \(L \), \(L \) is Turing-recognizable if and only if \(L \leq_m A_{TM} \).

2. (50 points) Let \(\text{ALL}_{TM} = \{ \langle M \rangle : M \text{ is a TM and } L(M) = \Sigma^* \} \).

 (a) Prove that \(\text{ALL}_{TM} \) is not co-recognizable (that is, prove that \(\overline{\text{ALL}_{TM}} \) is not recognizable).

 (b) Find the flaw with the following “proof” that \(\text{ALL}_{TM} \) is not recognizable. (Note: as per our convention, we ignored the issue of an input that is not a valid encoding of a TM; this is easy to take care of, and not an actual flaw).

 We will show \(E_{TM} \leq_m \text{ALL}_{TM} \) (which is sufficient, as we already know that \(E_{TM} \) is not recognizable). The mapping \(f \) is defined as follows. On input \(\langle M \rangle \) output \(\langle M' \rangle \), where \(M' \) is the following TM:

 \(M' \), on any input \(x \), run \(M \) on \(x \). If \(M \) accepts, reject. If \(M \) rejects, accept.

 To prove correctness, note that if \(\langle M \rangle \in E_{TM} \) then \(L(M) = \emptyset \), and thus \(L(M') = \Sigma^* \), implying that \(\langle M' \rangle \in \text{ALL}_{TM} \). On the other hand, if \(\langle M \rangle \notin E_{TM} \) then there exists some input \(x \) such that \(M \) accepts \(x \), so \(M' \) rejects \(x \), and thus \(L(M') \neq \Sigma^* \), implying \(\langle M' \rangle \notin \text{ALL}_{TM} \).

 (c) Provide a (non-flawed!) proof that \(\text{ALL}_{TM} \) is not recognizable. (Hint: Show that it suffices to prove \(A_{TM} \leq_m \overline{\text{ALL}_{TM}} \), and prove that.)

3. (25 points) Define \(L = \{ \langle M \rangle : M \text{ is a TM that accepts the string } 001, \text{ and does not accept the string } \varepsilon \} \). Prove that \(L \) is not recognizable.

4. **Extra Credit:** We define a new type of reduction, \(R \)-reducibility, as follows. We say \(A \leq_R B \) if given a subroutine (oracle) recognizer for \(B \), there exists a recognizer for \(A \).

 It is clear that if \(A \leq_R B \) and \(B \) is recognizable, then \(A \) is recognizable, or equivalently, if \(A \leq_R B \) and \(A \) is not recognizable, then \(B \) is not recognizable. It is also clear that a mapping reduction is a special case of \(R \)-reducibility, namely, if \(A \leq_m B \) then \(A \leq_R B \).

 Here you need to determine whether or not the other direction also holds, namely whether or not mapping reducibility is equivalent to \(R \)-reducibility.

 Specifically, prove or disprove the following: For all languages \(A, B \), if \(A \leq_R B \) then \(A \leq_m B \).