1. (25 points) Let \(L_1, L_2 \) be two Turing-recognizable languages, with the additional property that \(L_1 \cup L_2 = \{0, 1\}^* \). Show that \(L_1 \leq_T (L_1 \cap L_2) \).

2. (25 points) Consider the following transformation that, given a pair \(\langle M, w \rangle \) consisting of a TM \(M \) and input \(w \), constructs the following TM \(M' \).

\(M' \): on an input string \(x \):
- Simulate the computation of \(M \) on \(w \) for \(|x| \) steps (where \(|x| \) is the length of \(x \)).
- If \(M \) does not accept \(w \) within these steps, then accept \(x \) and halt.
- If \(M \) does accept \(w \) within these steps, then reject \(x \) and halt.

(a) Supposed that \(M \) accepts \(w \). What is \(L(M') \)? (justify your answer)
(b) Suppose that \(M \) does not accept \(w \). What is \(L(M') \)? (justify your answer)

3. (50 points) Prove that the following languages are undecidable.

\(a \) PAL\(_{TM} = \{\langle M \rangle : M \text{ is a TM that accepts all palindromes} \}\).

\(b \) SUB\(_{TM} = \{\langle M_1, M_2 \rangle : M_1, M_2 \text{ are TMs and } L(M_1) \subseteq L(M_2) \}\).

\(c \) CONC\(_{TM} = \{\langle M_1, M_2, M_3 \rangle : M_1, M_2, M_3 \text{ are TMs, and } L(M_1) = L(M_2)L(M_3) \}\).

4. Extra Credit: Let \(\text{HALT}_\varepsilon = \{\langle M \rangle : M \text{ is a TM with } \Sigma = \{0, 1\}, \Gamma = \{0, 1, \varepsilon\} \text{ and } M \text{ halts on input } \varepsilon \} \). It is easy to prove that \(\text{HALT}_\varepsilon \) is undecidable (you do not need to show this).

Let COUNT be the problem of calculating, given a positive integer \(n \) as input, how many \(n \)-state TMs are in \(\text{HALT}_\varepsilon \).

First, convince yourself that COUNT \(\leq_T \) \(\text{HALT}_\varepsilon \) (you do not need to show this). Then, prove that a reduction in the other direction is also possible (which implies that there’s no algorithm for computing COUNT). That is, prove that \(\text{HALT}_\varepsilon \leq_T \) COUNT.

Note: While we defined Turing reductions for languages (or decision problems, returning 0/1 on each input), COUNT is a problem of computing a multi-bit output function (computing \(f : \mathbb{N} \to \mathbb{Z} \), where \(f(n) \) counts how many \(n \)-state TMs halt when run on a blank tape). Nonetheless, this should not make a big difference, and the definition of Turing-reducibility is extended in the natural way (i.e., given an oracle computing COUNT, you need to show an algorithm deciding \(\text{HALT}_\varepsilon \)).