
COMS W3261: Computer Science Theory April 12, 2017

Lecture (4/11): Mapping Reductions

Instructor: Tal Malkin Lecture given by: Flora Min Jung Park (mp3369)

1 Understanding Mapping Reductions

1.1 Recap

Definition 1. Language A is mapping reducible to language B (A ≤m B)

if there is a computable function f : Σ∗ → Σ∗, where for every w, w ∈ A⇔ f(w) ∈ B

Example 2. Let’s consider the following languages A, B.

A = {strings in {a, b}∗ with amount of a’s = amount of b’s},
B = {anbn : n ≥ 0}.
We can construct our mapping f to be, for example,

f(w): on input w, sorting w by the symbols (and thus putting all a’s before b’s).

- for any string w, f(w) ∈ B if and only if w ∈ A

- note that this example is onto (thought it doesn’t have to be), but not one-to-one

1.2 Mapping Reduction in relation to Turing Reduction

Theorem 3. If A ≤m B, then A ≤T B

Proof. Let f be the mapping, and DB the decider for L(B).

Then, we can construct a decider DA for A on input w:

DA on input w:

• compute y = f(w)

• run DB(y) and output the same

Fact 4. On the other hand, if A ≤T B, then this does not necessarily mean that A ≤m B. However, it

does in the following special case: check if the Turing reduction uses the Decider once, and always outputs

same (no flipping of accept/reject). In this case, the Turing reduction implies Mapping reduction.

Theorem 5. If A ≤T B, and this reduction calls the decider for B, DB exactly once and outputs same.

Then, A ≤M B.

1



Proof. Let A ≤T B via a reduction that constructs a decider DA for A, by calling a decider DB for B

exactly once and outputting the same thing as DB. We define f(w) as the input that DB is invoked on

when DA starts with input w. This f is clearly computable, as this is exactly what DA computes on

input w, before calling DB on f(w). It satisfies that w is in A if and only if f(w) is in B, because of the

fact that the output of DA on w is the same as the output of DB on f(w) .

1.3 Mapping Reduction Properties

Theorem 6. If A ≤m B and B is recognizable, then A is also recognizable.

Proof. Let f be the mapping, and MB the recognizer for B.

We can construct a recognizer MA on input w:

MA on input w:

• compute y = f(w)

we are using the fact that f is a computable function (as part of the def. of mapping reduction)

• run MB(y)

• if it accepts, accept.

• if it rejects, reject.

Analysis: Note that since f is a computable function, the first step is computable in finite time.

if w ∈ A

⇒ y = f(w) ∈ B

⇒MB(y) accepts

⇒MA(w) accepts

if w /∈ A

⇒ y = f(w) /∈ B

⇒MB(y) rejects or runs forever

⇒MA(w) rejects or loops forever

Theorem 7. If A ≤m B iff A ≤m B.

Proof. Prove both ways for equivalence:

→: If A ≤m B, then A ≤m B

Let’s assume A ≤m B, and the mapping for this reduction to be f . We know that our mapping f

satisfies w ∈ A ⇔ f(w) ∈ B. This is equivalent to w /∈ A ⇔ f(w) /∈ B for all mapping (will always

answer yes/yes, no/no). Thus we can use this same f to map A ≤m B.

←: If A ≤m B, then A ≤m B: Follows from the above, by noticing that A = A and B = B.

2



Some other possible exercises:

Corollary 8. If A ≤m B and A is not recognizable, then B is not recognizable.

Proof. Same reasoning with same f construction (understand it as contrapositive of Theorem 7).

Theorem 9. If A ≤m B and B is decidable, then A is also decidable.

Corollary 10. If A ≤m B and A is not decidable, then B is not decidable.

Corollary 11. If A ≤m B, and A is not recognizable (A is not co-recognizable), then B is not recognizable.

Fact 12. Note that for Turing reductions you can add complements arbitrarily. For mapping reduction

you can only add complement to both sides, not just one at a time – otherwise it may no longer be true.

Example 13. EQTM = {〈M1,M2〉 : M1,M2 are TMs and L(M1) = L(M2)} is neither recognizable

nor co-recognizable.

Claim 14. EQTM is not recognizable.

Proof. By the previous lecture, we have seen ETM ≤T EQTM . This reduction is actually a mapping

reduction where our f (mapping) corresponds to f(〈M〉): 〈M∅,M〉, where M∅ is the TM that rejects all

inputs (This is a sufficient explanation because we already know ETM is not recognizable).

This is mapping reduction because: f is a computable function, since it involves outputting the en-

coding of M∅ (which can be hard coded into our algorithm), followed by the encoding M , which is just

copying of the input.

〈M〉 ∈ ETM :

⇔ M is a TM and L(M) = ∅ = L(M∅)

⇔ 〈M∅,M〉 ∈ EQTM

Claim 15. EQTM is not co-recognizable. (i.e. EQTM is not recognizable)

Proof. Let’s prove that ATM ≤m EQTM (or equivalently, ATM ≤m EQTM ). This is sufficient because

we know that ATM is not recognizable (we proved in class that ATM is non-decidable but recognizable).

We can construct an f such that: f(〈M,w〉) = 〈M1,M2〉 where M1 accepts all inputs, and M2 for any

input x, runs M on w and if it accepts, accept x. We can easily deduct that this f is computable as well.

Analysis

If 〈M,w〉 ∈ ATM

then M accepts w, so M2 will accepts all inputs x, namely L(M2) = Σ∗ = L(M1).

therefore, 〈M1,M2〉 ∈ EQTM

If 〈M,w〉 /∈ ATM

then M does not accept w, so M2 does not accept any input x, namely L(M2) = ∅ 6= L(M2).

therefore, 〈M1,M2〉 /∈ EQTM

3



Example 16. Revisiting the proof of Rice’s Theorem

By complementing both sides and recalling that ATM is not recognizable, we get the following revined

version of the Rice Theorem. For proving the Rice Theorem, we proved that for any non-trivial language

property P, if ∅ does not satisfy the property then we showed a mapping reduction from ATM ≤m P , and

if ∅ does satisfy the property, then it was a mapping reduction from ATM ≤m P .

Theorem 17. Rice’s Theorem

For any P , a non-trivial recognizable language property, if ∅ satisfies P then P is not recognizable, and

if ∅ does not satisfy P then P is not recognizable. In either case, P is undecidable.

Example 18. CLTTM = {〈M〉: where M is a TM and L(M) is a context free language} Deduct that

CLTTM is non recognizable with the Refined Version of the Rice’s Theorem.

Proof. We show that CLTTM is a non-trivial property of TM languages, and that ∅ satisfies the property.

Thus, using the refined version of Rice’s theorem above, we can conclude CLTTM is not recognizable.

To show that it is not trivial: there exist a TM in CLTTM , e.g. take M∅ which rejects all inputs.

< M∅ >∈ CLTTM because ∅ is a context free language. There also exists a TM not in CLTTM , e.g take a

TM T that accepts all strings of the form anbncn and rejects all other strings. 〈T 〉 not in CLTTM because

L(T ) = {anbncn : n ≥ 0} is not a CFL.

To show that it’s a language property, note that for any two TMs M1, M2 with L(M1)=L(M2), either

this language is CFL, and then both 〈M1〉, 〈M2〉 ∈ CFLTM , or this language is not a CFL and then

both 〈M1〉, 〈M2〉 /∈ CFLTM . In any case, 〈M1〉 ∈ CFLTM ⇔< M2 >∈ CFLTM .

Finally, ∅ satisfies the property since, as we already mentioned above, ∅ is a CFL.

4


