COMS W3261: Computer Science Theory

April 12, 2017

Lecture (4/11): Mapping Reductions

Instructor: Tal Malkin Lecture given by: Flora Min Jung Park (mp3369)

1 Understanding Mapping Reductions

1.1 Recap

Definition 1. Language A is mapping reducible to language B $(A \leq_m B)$ if there is a computable function $f: \Sigma^* \to \Sigma^*$, where for every $w, w \in A \Leftrightarrow f(w) \in B$

Example 2. Let's consider the following languages A, B. $A = \{strings in \{a, b\}^* \text{ with amount of } a's = amount of b's\},\$ $B = \{a^n b^n : n \ge 0\}.$ We can construct our mapping f to be, for example, f(w): on input w, sorting w by the symbols (and thus putting all a's before b's).

- for any string $w, f(w) \in B$ if and only if $w \in A$

- note that this example is onto (thought it doesn't have to be), but not one-to-one

1.2 Mapping Reduction in relation to Turing Reduction

Theorem 3. If $A \leq_m B$, then $A \leq_T B$

Proof. Let f be the mapping, and D_B the decider for L(B). Then, we can construct a decider D_A for A on input w:

 D_A on input w:

- compute y = f(w)
- run $D_B(y)$ and output the same

Fact 4. On the other hand, if $A \leq_T B$, then this does not necessarily mean that $A \leq_m B$. However, it does in the following special case: check if the Turing reduction uses the Decider once, and always outputs same (no flipping of accept/reject). In this case, the Turing reduction implies Mapping reduction.

Theorem 5. If $A \leq_T B$, and this reduction calls the decider for B, D_B exactly once and outputs same. Then, $A \leq_M B$. *Proof.* Let $A \leq_T B$ via a reduction that constructs a decider D_A for A, by calling a decider D_B for B exactly once and outputting the same thing as D_B . We define f(w) as the input that D_B is invoked on when D_A starts with input w. This f is clearly computable, as this is exactly what D_A computes on input w, before calling D_B on f(w). It satisfies that w is in A if and only if f(w) is in B, because of the fact that the output of D_A on w is the same as the output of D_B on f(w).

1.3 Mapping Reduction Properties

Theorem 6. If $A \leq_m B$ and B is recognizable, then A is also recognizable.

Proof. Let f be the mapping, and M_B the recognizer for B.

We can construct a recognizer M_A on input w: M_A on input w:

- compute y = f(w)
 we are using the fact that f is a computable function (as part of the def. of mapping reduction)
- run $M_B(y)$
- if it accepts, accept.
- if it rejects, reject.

Analysis: Note that since f is a computable function, the first step is computable in finite time.

if $w \in A$ $\Rightarrow y = f(w) \in B$ $\Rightarrow M_B(y) \text{ accepts}$ $\Rightarrow M_A(w) \text{ accepts}$ if $w \notin A$

 $\Rightarrow y = f(w) \notin B$ $\Rightarrow M_B(y) \text{ rejects or runs forever}$ $\Rightarrow M_A(w) \text{ rejects or loops forever}$

Theorem 7. If $A \leq_m B$ iff $\overline{A} \leq_m \overline{B}$.

Proof. Prove both ways for equivalence: \rightarrow : If $A \leq_m B$, then $\overline{A} \leq_m \overline{B}$

Let's assume $A \leq_m B$, and the mapping for this reduction to be f. We know that our mapping f satisfies $w \in A \Leftrightarrow f(w) \in B$. This is equivalent to $w \notin A \Leftrightarrow f(w) \notin B$ for all mapping (will always answer yes/yes, no/no). Thus we can use this same f to map $\overline{A} \leq_m \overline{B}$.

 \leftarrow : If $\overline{A} \leq_m \overline{B}$, then $A \leq_m B$: Follows from the above, by noticing that $\overline{\overline{A}} = A$ and $\overline{\overline{B}} = B$.

Some other possible exercises:

Corollary 8. If $A \leq_m B$ and A is not recognizable, then B is not recognizable.

Proof. Same reasoning with same f construction (understand it as contrapositive of Theorem 7).

Theorem 9. If $A \leq_m B$ and B is decidable, then A is also decidable.

Corollary 10. If $A \leq_m B$ and A is not decidable, then B is not decidable.

Corollary 11. If $A \leq_m B$, and \overline{A} is not recognizable (A is not co-recognizable), then \overline{B} is not recognizable.

Fact 12. Note that for Turing reductions you can add complements arbitrarily. For mapping reduction you can only add complement to both sides, not just one at a time – otherwise it may no longer be true.

Example 13. $EQ_{TM} = \{ \langle M1, M2 \rangle : M1, M2 \text{ are TMs and } L(M_1) = L(M_2) \}$ is neither recognizable nor co-recognizable.

Claim 14. EQ_{TM} is not recognizable.

Proof. By the previous lecture, we have seen $E_{TM} \leq_T EQ_{TM}$. This reduction is actually a mapping reduction where our f (mapping) corresponds to $f(\langle M \rangle)$: $\langle M_{\emptyset}, M \rangle$, where M_{\emptyset} is the TM that rejects all inputs (This is a sufficient explanation because we already know E_{TM} is not recognizable).

This is mapping reduction because: f is a computable function, since it involves outputting the encoding of M_{\emptyset} (which can be hard coded into our algorithm), followed by the encoding M, which is just copying of the input.

 $\langle M \rangle \in E_{TM}$: \Leftrightarrow M is a TM and L(M) = \emptyset = L(M_{\emptyset}) $\Leftrightarrow \langle M_{\emptyset}, M \rangle \in EQ_{TM}$

Claim 15. EQ_{TM} is not co-recognizable. (i.e. $\overline{EQ_{TM}}$ is not recognizable)

Proof. Let's prove that $\overline{A_{TM}} \leq_m \overline{EQ_{TM}}$ (or equivalently, $A_{TM} \leq_m EQ_{TM}$). This is sufficient because we know that $\overline{A_{TM}}$ is not recognizable (we proved in class that A_{TM} is non-decidable but recognizable). We can construct an f such that: $f(\langle M, w \rangle) = \langle M1, M2 \rangle$ where M1 accepts all inputs, and M2 for any input x, runs M on w and if it accepts, accept x. We can easily deduct that this f is computable as well.

Analysis

If $\langle M, w \rangle \in A_{TM}$ then M accepts w, so M2 will accepts all inputs x, namely $L(M2) = \Sigma * = L(M1)$. therefore, $\langle M1, M2 \rangle \in EQ_{TM}$

If $\langle M, w \rangle \notin A_{TM}$ then M does not accept w, so M2 does not accept any input x, namely $L(M2) = \emptyset \neq L(M2)$. therefore, $\langle M1, M2 \rangle \notin EQ_{TM}$

Example 16. Revisiting the proof of Rice's Theorem

By complementing both sides and recalling that $\overline{A_{TM}}$ is not recognizable, we get the following revined version of the Rice Theorem. For proving the Rice Theorem, we proved that for any non-trivial language property P, if \emptyset does not satisfy the property then we showed a mapping reduction from $A_{TM} \leq_m P$, and if \emptyset does satisfy the property, then it was a mapping reduction from $A_{TM} \leq_m \overline{P}$.

Theorem 17. Rice's Theorem

For any P, a non-trivial recognizable language property, if \emptyset satisfies P then P is not recognizable, and if \emptyset does not satisfy P then \overline{P} is not recognizable. In either case, P is undecidable.

Example 18. $CLT_{TM} = \{\langle M \rangle: where M \text{ is a TM and } L(M) \text{ is a context free language}\}$ Deduct that CLT_{TM} is non recognizable with the Refined Version of the Rice's Theorem.

Proof. We show that CLT_{TM} is a non-trivial property of TM languages, and that \emptyset satisfies the property. Thus, using the refined version of Rice's theorem above, we can conclude CLT_{TM} is not recognizable.

To show that it is not trivial: there exist a TM in CLT_{TM} , e.g. take M_{\emptyset} which rejects all inputs. $\langle M_{\emptyset} \rangle \in CLT_{TM}$ because \emptyset is a context free language. There also exists a TM not in CLT_{TM} , e.g take a TM T that accepts all strings of the form $a^{n}b^{n}c^{n}$ and rejects all other strings. $\langle T \rangle$ not in CLT_{TM} because $L(T) = \{a^{n}b^{n}c^{n} : n \geq 0\}$ is not a CFL.

To show that it's a language property, note that for any two TMs M1, M2 with L(M1)=L(M2), either this language is CFL, and then both $\langle M1 \rangle, \langle M2 \rangle \in CFL_{TM}$, or this language is not a CFL and then both $\langle M1 \rangle, \langle M2 \rangle \notin CFL_{TM}$. In any case, $\langle M1 \rangle \in CFL_{TM} \Leftrightarrow \langle M2 \rangle \in CFL_{TM}$.

Finally, \emptyset satisfies the property since, as we already mentioned above, \emptyset is a CFL.