
Lecture Notes:
The Halting Problem; Reductions

COMS W3261
Columbia University

20 Mar 2012

1 Review

Key point. Turing machines can be encoded as strings, and other Turing machines can read
those strings to peform “simulations”.

Recall two definitions from last class:

Definition 1. A language is Turing-recognizable if there exists a Turing machine which
halts in an accepting state iff its input is in the language.

Definition 2. A language is Turing-decidable if it halits in an accepting state for every
input in the language, and halts in a rejecting state for every other input.

Intuitively, for recognizability we allow our TM to run forever on inputs that are not in
the language, while for decidability we require that the TM halt on every input.

Now recall our two most important results:

Theorem 1. There exist (uncountably many!) languages which are not Turing-recognizable.

Proof. (intuitive) There are as many strings as natural numbers, because every (finite) string
over a finite alphabet can be encoded as a binary number. There are as many TMs as strings,
because every TM can be encoded as a string. Thus, both the strings and the TMs are
countably infinite.

There are as many languages as real numbers. Every language is a subset of the set of
strings; we can think of this subset as being encoded by an infinite binary sequence (i.e. a
real number) with 1s at indices corresponding to strings in the language and 0s everywhere
else.

Thus there are more languages than Turing machines; we conclude that some (indeed,
“most”) languages are not recognized by any TM.

Now we will construct a specific undecidable language.

1



Definition 3. The language XTM = {〈M〉 : M does not accept 〈M〉}

Theorem 2. XTM is not Turing-decidable.

Question. Give the “paradox” proof.

Proof 1. (by Epimenides’ paradox) Suppose we had a Turing machine M deciding this lan-
guage. What happens when we run M with input 〈M〉? If we claim it accepts, then by
definition it ought to reject; if it rejects, then it ought to accept! Either way, we have a
contradiction.

Alternatively, here’s a proof that it’s not even Turing-recognizable.

Question. Give the “diagonalization” proof.

Proof 2. (by diagonalization) Suppose we constructed an (infinite) chart listing all the Turing
machines and all encodings of Turing machines. We write 1 in cell [i, j] if Mi accepts 〈Mj〉
and 0 otherwise:

〈M1〉 〈M2〉 〈M3〉 · · ·
M1 0 1 1
M2 1 1 1
M3 1 0 1
...

. . .

(The particular arrangement of 1s and 0s is unimportant—it will depend on our encoding
scheme.) Note that by reading the 1s from the ith row, we get the language decided by
Mi. Does XTM appear in any row of this list? Not the first row: M1 rejects 〈M1〉, so 〈M1〉
must be in XTM . Not the second row: M2 accepts 〈M2〉, so 〈M2〉 must not be in XTM .
Continuing with this procedure, we can show that XTM is not the same as any row of this
enumeration of TMs, and as a consequence is not decided by any TM.

2 The Accepting Problem

XTM is admittedly a rather strange language, and it’s not obvious why we should really care
that it’s not recognizable. Let’s look at a different one:

Definition 4. The language ATM = ({〈M〉, w) : M accepts w}

The question of whether ATM is decidable is precisely the question of whether one TM
can predict the output of another TM!

Question. Is this language Turing-recognizable?

Yes. Given 〈M〉, w as input, we can just simulate M on w.

Question. Is this language Turing-decidable?

2



No.

Theorem 3. ATM is undecidable.

Proof. Suppose, towards contradiction, that we had a TM M deciding ATM . Then we could
construct a TM N deciding XTM , as follows:

• Given input 〈P 〉:

• Run M on 〈P, P 〉.

• If M accepts, reject.

• If M rejects, accept.

Clearly, N is a TM deciding XTM . But we know that there no such TM exists! Because the
existence of M implies the existence of N , we conclude that M also does not exist.

Clarification. Understand why ATM is recognizable but not decidable.

Key point. There is no Turing machine which can predict the output of all other Turing
machines. However, there are Turing machines which can predict the output of some other
Turing machines.

3 The Halting Problem

Let’s try a more modest goal: rather than actually attempting to predict output, let’s just
predict whether a Turing machine halts on its input, or runs forever.

Definition 5. The language HALTTM = {(〈M〉, w) : M halts on input w}

Question. Is this language Turing-recognizable?

Yes: again, it just simulates (but it will run forever if the simulated machine does!).

Question. Is this language Turing-decidable?

No.

Theorem 4. HALTTM is undecidable.

Proof. This is very much like the previous proof. Suppose we had a TM M deciding
HALTTM . The we could construct a TM N deciding ATM , as follows:

• Given input (〈P 〉, w):

• Run M on (〈P 〉, w).

• If M rejects, reject: P runs forever given input w, so does not accept w.

3



• Otherwise, we know that P terminates, and it is “safe” to simulate it on w. Do so.

• If P accepts, accept.

• If P rejects, reject.

Clearly, N decides ATM . Similarly to the previous proof, we know that ATM is undecidable,
so M cannot exist.

Key point. There is no Turing machine which finds infinite loops in all other Turing ma-
chines (though again, it may do so for a restricted subset). This is a problem which would
have real, practical benefits if it were soluble, but it’s not.

Clarification. Is this clear?

4 Other Undecidable Languages

Definition 6. The language ETM = {〈M〉 : L(M) = ∅}

Question. Is this language decidable?

No: we can construct a decider for ATM again.

Proof. Suppose M decides ETM .

• Given input 〈P,w〉:

• Construct a new TM P ′ which rejects if its input is not w, and otherwise simulates P
on w.

• Run M on 〈P 〉.

• If M accepts, reject.

• If M rejects, accept.

We have a contradiction.

5 Reductions

In working through these examples we’ve come across a very powerful proof technique: to
prove that some language is undecidable, we assume that we have a decider, and show that
this implies the existence of a decider for a known undecidable problem. This technique is
called reduction.

There are several different kinds of reduction; the kind that we’ve discussed so far is
called Turing reduction (for reasons that are hopefully obvious). The general idea is that

4



we assume we have a TM which computes the solution to one problem, and we use that to
compute the solution to another problem.

To say that a solver for B allows us to solve A (“A reduces to B”), we write

A ≤T B

(I’ve always found this notation weird. An easy way to remember it is that if A is reducible
to B, the machine that computes B is at least as powerful as the machine that computes
A: it is definitely powerful enough to solve A, and maybe other problems as well. So A is
“easier than” B.)

Question. ATM ≤T XTM , or vice-versa?

Vice-versa.

Let’s formalize the proof technique we’ve been using so far:

Theorem 5. A ≤T B and B decidable → A decidable.

Corollary 1. A ≤T B and A undecidable → B undecidable.

6 Other Undecidable Languages, continued

Now let’s try a few more reductions:

Definition 7. The language REGTM = {〈M〉 : L(M) is regular}

Question. Prove that this is undecidable. (Hint: reduce from ATM)

Proof. Suppose we have a decider M for REGTM .

• Given input 〈P,w〉:

• Construct a new TM P ′ as follows:

– If the input is of the form 0n1n, accept.

– Otherwise, ignore the input and run P on w

• Run M on P ′

If M doesn’t accept w, L(P ′) = {0n1n}, and is not regular. If M accepts w, L(P ′) = Σ∗.
Thus,

• If M accepts, accept.

• If M rejects, reject.

Once again, a contradiction.

5



Definition 8. The language EQTM = {(〈M〉, 〈N〉) : L(M) = L(N)}

Question. Prove that this is undecidable. (Hint: reduce from ETM)

Proof. Suppose we have a decider M for EQTM . Construct the following decider for ETM :

• Given input 〈P 〉:

• Construct a TM Q which rejects immediately on all inputs.

• Run M on (〈P 〉, 〈Q〉), and accept iff it accepts.

Once again, a contradiction.

7 Next Class

It seems like every interesting language of Turing machines we’ve come up with is undecid-
able. Is there any property of Turing machines which can be decided?

6


