COMS W3261: Theoretical Computer Science.

Instructor: Tal Malkin

Problem Set 3

Due: Tue, 9/25/07. Reading: Chapter 1.2.

- 1. problem 1.32 in textook (roughly, proving that checking addition of binary numbers is a regular language).
- 2. Problem 1.16 (b) in textbook (NFA to DFA conversion).
- 3. In the following problems you are asked to apply the constructions we saw for proving that the class of regular languages is closed under the regular operations.
 - (a) 1.8(a) in textbook
 - (b) 1.9(b) in textbook
 - (c) 1.10(b) in textbook
- 4. For languages L_1 and L_2 over alphabet Σ , define the shuffle operation as follows:

shuffle $(L_1, L_2) = \{w | w = a_1 \circ b_1 \circ \ldots \circ a_n \circ b_n \text{ such that } a_1 \circ \ldots \circ a_n \in L_1 \text{ and } b_1 \circ \ldots \circ b_n \in L_2, \text{ and each string } a_i, b_i \in \Sigma^* \}.$

Show that the class of regular anguages is closed under the shuffle operation.

Hint: Given DFAs $M_1 = (Q_1, \Sigma, \delta_1, q_1, F_1)$ for L_1 and $M_2 = (Q_2, \Sigma, \delta_2, q_2, F_2)$ for L_2 , construct an NFA $N = (Q, \Sigma, \delta, q_0, F)$ for **shuffle** (L_1, L_2) by setting $Q = Q_1 \times Q_2$ (with appropriately chosen δ, q_0, F).