COMS W3261: Theoretical Computer Science.

Instructor: Tal Malkin

Problem Set 11

Due: Never

Reading: Chapter 7.1-7.4

1. Problems 7.6 and 7.7 in text (closure of P and NP under various operations).

As a side note, P and NP are both also closed under the star and the intersection operations (e.g., see problem 7.15 in text). We currently do not know whether NP is closed under complement.

- 2. Problem 7.8 in text (prove that CONNECTED is in P, by analyzing a given algorithm).
- 3. Let L be some non-trivial language in P (e.g., L =CONNECTED, L =COMPOSITES, $L = a^*$, etc).

Prove that L is NP-Complete if and only if P=NP.

- 4. Read problem 7.29 in the text (a scheduling problem for final exams). Formulate this problem as a language, and show that this language is in NP. (That is, solve problem 7.29, except you don't have to show that the problem is NP-hard, just that it is in NP).
- 5. Problem 7.11 in book (ISO is in NP).

As a side note, we do not know whether ISO is in P, nor whether ISO is NP-Complete. It is often believed that it is neither, namely that ISO is a hard problem (not in P), but not "the hardest problem" (not an NP-Complete problem).¹

¹Of course, if P=NP, this is wrong on both counts, as per problem 3 above.