
Lecture 15

Frederick Kellison-Linn
fjk2119

19 March 2018

1 Introduction

We left off last time with the Church-Turing thesis, that every reasonable model
of computation can be simulated by a Turing machine. This means that we can
use Turing machines as our canonical model of computation, and say that every
algorithm can be implemented by some Turing machine. This includes every-
thing seen in your data structures and algorithms class, everything published in
theoretical CS articles, and so on.

Transitioning into the next part of this class, we’re going to be looking at
what types of problems Turing machines can solve, and even more interestingly,
what kinds of problems they can’t solve. Today, we’re going to go over encodings
of Turing machines (and other automata we’ve seen before), recall what it means
for a language to be decidable, and look at examples of some decidable languages.

2 Encodings

As we know, Turing machines are given their input as the starting content of the
tape when the machine begins execution. However, many familiar algorithms do
not deal with “strings”: we have trees, graphs, queues, and many other abstract
mathematical structures. In order to develop Turing machines which work with
these structures, we need to have a method for turning them into strings in a
standardized way. The process to do this will differ for each type of structure,
so we will not discuss all of them here.

Most interestingly, we can develop an encoding method for Turing machines
themselves, which allows Turing machines to reason about Turing machines.
This shouldn’t be too shocking, since every time we write out a formal descrip-
tion of a Turing machine we are indeed converting it to a string. We will discuss
one such method of encoding in the next few paragraphs, but know that many
different encodings are possible.

Recall that the formal definition of a Turing machine M is a tuple:

M = (Q,Σ,Γ, δ, q0, aaccept, qreject)

1

where Q is the set of states, Σ and Γ are the input and tape alphabets, re-
spectively, and δ is the transition function. In order to make our encoding a
bit easier, we will make some assumptions about the structure of our Turing
machine. You can verify as an exercise that none of these assumptions reduce
the power of the model of computation: any arbitrary Turing machine can be
converted to one obeying these constraints:

Q = {0, 1, 2, ..., n}

q0 = 0

qaccept = 1

qreject = 2

Σ = {0, 1}

Γ = Σ ∪ {0, 1, 2, ...,m} where 2 is our blank symbol (i.e. = 2)

We will also assume that the machine M is deterministic, since we have
already seen the equivalence of deterministic and nondeterministic machines.
Thus, the only information that we actually need to encode is the value of n,
m, and the transitions of δ.

Suppose that δ(qi, a) = (qj , b,X). To encode this, transition, we write:
0i+110a+110j+110b+11x where x = 0 if X = L and x = 00 if X = R. For
example, if we had the transition δ(4, 0) = (3, 1, L), then the encoding of this
transition would be 00000101000010010. Now, for every transition specified by
δ, we encode that transition and append them all together, separated by 11.
Thus, if δ were the function:

δ(0, 1) = (1, 1, R)

δ(0, 0) = (0, 0, R)

δ(0, 2) = (0, 2, R)

We would have the encoding of δ as:

01001001001001101010101001101000101000100

Finally, we encode n as a string of n zeros, 0n and append this with the encoding
for δ, separated by three 1s. The same is done for m. Thus, the full encoding
for the above machine would be:

00011100011101001001001001101010101001101000101000100

We won’t again discuss the specifics of a Turing machine’s encoding. When
we want to talk about the encoding of a particular Turing machine, we will use
the notation 〈M〉 to refer to the encoding of the Turing machine M .

This process of encoding can be applied to any (finite) mathematical struc-
ture. Thus, we can talk about the encodings of DFAs, NFAs, and PDAs (and

2

even graphs, tuples, etc.) just as we can talk about encodings of Turing ma-
chines. In general we will use the notation 〈X〉 to denote the encoding of the
object X.

Moving forward, we will be designing Turing machines which take other
automata as inputs. Since the structure of an encoding is highly specific, there
are many strings which do not encode a valid object. For instance, there is no
Turing machine which will generate the encoding 101. However, the format of
a valid encoding is quite easy to verify, so a Turing machine which expects an
encoding can always easily check whether some string is a valid encoding of an
object.

3 Decidability

Recall the defintion we gave for decidability. We said that a language L is Turing
decidable (or simply decidable) if there exists a Turing machine M which has
the property that if x ∈ L, then M accepts x, and if x /∈ L, then M rejects x
for all x ∈ Σ∗. Another way to put this is that x ∈ L if and only if x ∈ L(M),
and M eventually halts on all inputs (i.e. there are no infinite loops).

3.1 Some Decidable Languages

Now we will look at some example languages which make use of the idea of
encodings. All of the following languages are decidable.

1. ADFA = {〈D,w〉 | D is a DFA which accepts w} We will design a ma-
chine M which halts on all inputs and recognizes ADFA. M , on input x,
does the following:

(a) Check that x = 〈D,w〉 for some DFA D = (Q,Σ, δ, q0, F) and string
w ∈ Σ∗. If not, reject x

(b) Keep track of a variable qsim representing the current state of D,
initialized to q0.

(c) For each symbol a of w in order:

i. Find the transition in 〈D〉 matching the symbol a and the state
qsim. Suppose that δ(qsim, a) = q′.

ii. Set qsim = q′.

(d) Scan 〈D〉 to see if qsim ∈ F . If so, accept x, otherwise, reject x.

We can see that M is a decider for ADFA as follows. If x ∈ L, then
x = 〈D,w〉 for some DFA D and string w, and D accepts w. This means
that following the transitions of δ will take D to an accepting state. Thus,
qf in step (d) above will find that qsim ∈ F , so M will accept x.

If x /∈ L, then either x is not a valid encoding, in which case M will reject
x or x = 〈D,w〉 but D does not accept w. Then, when M reaches step
(d), it will find that qsim /∈ F , so M will reject x.

3

In the future, it will be our convention that rather than always specifying
step (a) where we check that the input is a valid encoding, we will say
(e.g.) “M , on input 〈D,w〉...” and it will be implicit that if the input is
not of this form then the machine should reject.

2. ANFA = {〈N,w〉 | N is an NFA which accepts w} We design the follow-
ing decider for ANFA. M , on input 〈N,w〉:

(a) Convert N to an equivalent DFA D.

(b) Check via the algorithm in (1) if w is accepted by D. If so, accept;
otherwise, reject.

From our unit on regular languages, we know that there is a deterministic
algorithm for converting an NFA to an equivalent DFA, so step (a) will
take finite time. Furthermore, N and D are equivalent, so M accepts
〈N,w〉 if and only if D accepts w if and only if N accepts w. Thus, M is
a decider for ANFA

3. EDFA = {〈D〉 | D is a DFA and L(D) is empty} The following machine
M is a decider for EDFA. On input 〈D〉:

(a) Initialize a list of ‘marked’ states, starting with q0.

(b) Repeat the following until the list remains unchanged.

i. Go through each state q in the marked list. For each transition
δ(q, a) = q′, check if q′ has been marked. If not, add it to the
list.

(c) Check if the marked list contains any state q ∈ F . If so, reject. If
not, accept.

Now we will show that M decides EDFA. That M halts on every input
can be seen from the fact that at least one state is added to the marked
list on each execution of step (i), so this loop will run at most |Q| times.
Then, we will reach step (c) and either accept or reject.

If 〈D〉 ∈ EDFA then there is no string which will take D to an accepting
state. Thus, because the marking process follows only transitions begin-
ning from q0, there will be no path which reaches some state in F . Thus,
for every state q in the marked list, it will be the case that q /∈ F , and so
M will accept.

If 〈D〉 /∈ EDFA, then there is at least one string w ∈ L(D). This means
that when D runs on w, it reaches an accepting state qf ∈ F . Thus, there
is a path in D from q0 to qf , so qf will eventually be marked. Then, in
step (c), M will reject.

4. EQDFA = {〈D1, D2〉 | D1 and D2 are DFAs and L(D1) = L(D2)} We
will not give an explicit construction of a machine M here. Instead, we
will note that L(D1) = L(D2) if and only if (L(D1) ∩ L(D2)) ∪ (L(D2) ∩

4

L(D1)) = ∅ (see midterm review notes for a proof that the class of regular
languages is closed under symmetric difference). Thus, in a similar fashion
to ANFA, we can build a new DFA D′ which accepts L(D1)⊕L(D2), and
use the algorithm from (3) to check if this language is empty.

5. ACFG = {〈G,w〉 | G is a CFG and G generates w} To prove this, we will
rely on two facts which we will not prove:

• There is some algorithm MCNF which can convert a grammar G to a
grammar G′ in Chomsky Normal Form (we won’t go into detail about
this here, see the end of Section 2.1 in Sipser for a full definition
and proof).

• If a string w can be generated by a grammar in CNF, then in can be
generated in at most 2|w| − 1 steps.

Now, we can give a decider M for ACFG as follows. On input 〈G,w〉:

(a) Convert G to G′ in CNF using MCNF .

(b) G′ has some finite number of rules k. Thus, there are k2|w|−1 possible
derivations of length 2|w|− 1. Enumerate all of these rule sequences,
trying all of them, discarding invalid sequences.

(c) If any sequence produces w, accept.

(d) Reject.

If 〈G,w〉 ∈ ACFG if and only if G can generate w, which is true if and
only if G′ can generate w, which is true if and only if G′ can generate
w in 2|w| − 1 steps. Thus, if 〈G,w〉 ∈ ACFG then some rule sequence
will generate w, and M will accept. Otherwise, no such rule sequence will
generate w, and M will reach step (d) and reject.

6. ECFG = {〈G〉 | G is a CFG and L(G) is empty} We will not give an ex-
plicit proof here, and instead sketch out the construction briefly. We use a
similar marking approach to EDFA, beginning with all terminals marked,
and then marking A if A→ x is a rule for some terminal x, or if A→ BC
is a rule for marked variables BC. When finished, reject if S is marked
and accept otherwise.

5

